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H I G H L I G H T S

c Hormonal control of the menstrual cycle is modeled from age 20 to menopause.
c The model predicts changes in follicle numbers and reproductive hormones due to aging.
c Hormonal treatments are tested which may delay menopause.
c The effects of AMH agonists and antagonists are investigated using model simulations.
c An ad hoc procedure is presented to estimate model parameters.
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a b s t r a c t

A system of 16 non-linear, delay differential equations with 66 parameters is developed to model

hormonal regulation of the menstrual cycle of a woman from age 20 to 51. This mechanistic model

predicts changes in follicle numbers and reproductive hormones that naturally occur over that time

span. In particular, the model illustrates the decline in the pool of primordial follicles from age 20

to menopause as reported in the biological literature. Also, model simulations exhibit a decrease in

antimüllerian hormone (AMH) and inhibin B and an increase in FSH with age corresponding to the

experimental data. Model simulations using the administration of exogenous AMH show that the

transfer of non-growing primordial follicles to the active state can be slowed enough to provide more

follicles for development later in life and to cause a delay in the onset of menopause as measured by the

number of primordial follicles remaining in the ovaries. Other effects of AMH agonists and antagonists

are investigated in the setting of this model.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Regulation of the reproductive cycle in adult women involves
hormones produced by the hypothalamic-pituitary-ovarian axis
(see Fig. 1). The pituitary, prompted by signals from the hypotha-
lamus, secretes follicle stimulating hormone (FSH) and luteinizing
hormone (LH) which control ovarian follicle development and
ovulation (Yen, 1991). The ovaries produce estradiol (E2), pro-
gesterone (P4), inhibin A (InhA) and inhibin B (InhB) which affect
the synthesis and release of FSH and LH (Karsch et al., 1973). The
ovaries also produce antimüllerian hormone (AMH) which affects
early follicular development (Skinner, 2005; Durlinger et al., 2002).
As a woman ages, her ability to produce offspring decreases because

of decreasing follicle numbers and changes in reproductive
hormones (Broekmans et al., 2009). Peak fertility occurs between
the ages of 20 and 30 (Soules et al., 2001). By the average age of
41, a woman is considered infertile because conception often
takes longer than 12 month (Broekmans et al., 2009). However, in
North America and Europe more women are postponing child-
bearing until their 30’s and must deal with the consequences of
reduced natural fertility. A mathematical model for hormonal
regulation of the menstrual cycle throughout a woman’s repro-
ductive life would be useful for studying age-related changes in
menstrual cyclicity. Such models may help to identify parameter
variations which are associated with subtle hormonal variations
occurring in women in their 30’s and model simulations may
assist in the testing of hormonal therapies.

Differential equations have been used to model different
aspects of hormonal control of the menstrual cycle, e.g., see
Bogumil et al. (1972a, 1972b), Plouffe and Luxenberg (1992),
Selgrade and Schlosser (1999), Schlosser and Selgrade (2000),
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Harris-Clark et al. (2003), Reinecke and Deuflhard (2007), Pasteur
(2008) and Margolskee and Selgrade (2011). These studies mod-
eled the phenomenon on the time scale of days and months, and
could model women of various ages by using different parameter
sets. Here we develop a variation on these models with the goal
to simulate key hormonal changes with advancing age, using a
single parameter set to represent women of different ages.

We present a system of 16 delay differential equations with 66
parameters which models a woman’s reproductive years between
age 20 and 51 from the point of view of hormonal control. Our
model simulations approximate data in the literature (Welt et al.,
1999) for two age groups of women, 20–34 yr old and 35–46 yr
old. Our model reflects changes in hormone levels and follicle
numbers that occur during that time span, e.g., the continual drop
in AMH (see Lee et al., 1996; Hudson et al., 1990), the decrease in
InhB between age 35 and 45 (see Welt et al., 1999), and the
subsequent rise in follicular phase FSH, while E2 and P4 levels
remain unaffected (Hale et al., 2007). The biological mechanism
which initiates these changes is the gradual loss of primordial
follicles (Skinner, 2005). The ‘‘primordial pool’’ refers to the
dormant follicles that a woman is born with and this pool
continually decreases over time due to atresia or due to transfer
to the active state. White et al. (2012) recently reported the
discovery of stem cells in a woman’s ovaries which may produce
oocytes after birth. However, we model primordial follicles
formed only before birth, their transfer to growing follicles and
then these follicles as they mature through primary, preantral,
antral and dominant status followed by ovulation and luteiniza-
tion. Our previous models (Selgrade and Schlosser, 1999; Harris-
Clark et al., 2003; Margolskee and Selgrade, 2011) did not include
state variables representing primordial, primary, preantral and
small antral follicles nor did they include AMH and InhB. The
decline of the primordial pool is eventually realized in a
decreased number of preantral and small antral follicles, which
directly translates to decreased levels of AMH and InhB (which
are produced by these follicles), and the decreased InhB causes
increased FSH production (since InhB inhibits FSH production). A
goal of our modeling endeavor is to investigate possible hormonal

treatments which may improve the fertility of women in their
30’s and early 40’s. To this end, we show that the administration
of exogenous AMH mitigates the loss of primordial follicles and,
hence, provides more and possibly healthier follicles for develop-
ment later in life.

Section 2 develops the model under study and describes the
model system of 16 differential equations (S1)–(S16). We devise
an ad hoc procedure for estimating the 66 model parameters and
discuss aspects of this procedure in Section 3 and Appendix A. The
resulting parameter sets are included in Appendix B. Results of
model simulations are presented in Section 4 with comparisons to
data in the biological literature. Statistical comparisons are made
between model simulations of hormones and ovarian stages
for age 30 versus age 40. Section 5 demonstrates how exogenous
AMH inputs, AMH agonists and AMH antagonists affect model
behavior. Finally, we summarize and discuss the results.

2. Biological background and model development

The menstrual cycle of a normally cycling adult female ranges
from 25 to 35 day in duration (Ojeda, 1992) and consists of the
follicular phase, ovulation and then the luteal phase. Pulses of
FSH and LH are secreted by the pituitary in response to pulses
of gonadotropin-releasing hormone (GnRH) produced by the
hypothalamus on a time scale of minutes. Because the ovaries
respond to average daily blood levels (Odell, 1979), our model
tracks average daily concentrations of FSH and LH, lumping the
effects of the hypothalamus and the pituitary together and just
considering the synthesis and release of FSH and LH on the time
scale of days. Models with this simplification have predicted quite
well daily hormone data in the literature, e.g., Harris-Clark et al.
(2003), Pasteur (2008) and Margolskee and Selgrade (2011). As
part of their normal function, the ovaries produce E2, P4, InhA and
InhB which control the pituitary’s synthesis and release of the
gonadotropin hormones during the various stages of the cycle
(Yen, 1991). The ovaries also produce AMH which affects early
follicular development (Skinner, 2005). Here we extend previous
models for monthly cycling to the reproductive life span of a
woman by beginning at the primordial stage of follicle develop-
ment and continuing through primary, preantral, and small antral
stages (see Fig. 2).

The follicular stages in our model in developmental order are
primordial (Primor), primary (Primar), preantral follicles (PrAnF),
small antral follicles (SmAnF), recruited follicles (ReF), growing
follicles (GrF), the dominant follicle (DomF), ovulatory follicle
(Ov), and four luteal stages (Lut1–Lut4). Note that our previous
models referred to the dominant follicle as primary, but this use
of the term primary was not in agreement with biological
references, e.g., Skinner (2005) and Hansen et al. (2008). Fig. 2
depicts the stages of follicular development, the hormones pro-
duced by each stage, and which stages are affected by the
pituitary hormones LH and FSH.

A primordial follicle consists of an oocyte surrounded by
squamous (flat) granulosa cells. If the primordial follicle does
not atrophy, it passes to the primary stage where granulosa cells
become cuboidal and theca cells are recruited. The primary stage
is considered the initial stage of follicular growth (Skinner, 2005;
Maciel et al., 2004; Visser et al., 2006), although Hansen et al.
(2008) referred to primary follicles as non-growing because their
growth is gonadotropin independent. The transition from the
primordial to the primary is stimulated and inhibited by a variety
of ovarian factors (Skinner, 2005; Reddy et al., 2009). Skinner
(2005) discussed granulosa and theca cell products that promote
the primordial to the primary transition such as KL, KGF and bFGF
growth factors. On the other hand, the hormone AMH produced

Ovaries

LH FSH E2 P4 Inh

AMH

Hypothalamus/Pituitary

Fig. 1. Hormonal control of the menstrual cycle via the hypothalamic-pituitary-

ovarian axis. Luteinizing hormone (LH) and follicle stimulating hormone (FSH) are

produced by the pituitary. Estradiol (E2), progesterone (P4), the inhibins and

antimüllerian hormone (AMH) are produced by the ovaries.
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by primary, preantral and small antral follicles is known to inhibit
the transition from the primordial to the primary pool (Skinner,
2005 or Reddy et al., 2009). Also Reddy et al. (2009) described
ovarian genetic factors such as oocyte PTEN and Foxo3a which
suppress the activation of the primordial follicle pool and hence
the transition to the primary pool. The first ovarian stage in our
model, Primor, represents the primordial pool of follicles. The
differential equation for this stage is a single term representing
the decay rate of the primordial pool and is directly proportional
to Primor and inversely proportional to both Primor and AMH (see
Eq. (S1)). This term models inhibitory signals between primordial
follicles and the inhibitory role of AMH on the primordial to
primary transition. The decay term from (S1) appears as a growth
term in (S2) for the number of primary follicles, Primar. The factor
of rsurv represents the fraction of primordial follicles that are not
lost to atresia before becoming primary follicles, i.e., rsurv is the
survival rate. The amount of AMH in (S1)–(S2) is given by (A5)
appearing below

d

dt
Primor¼�

r1Primor

1þcprmPrimorþcAMHAMH
ðS1Þ

d

dt
Primar¼ rsurv

r1Primor

1þcprmPrimorþcAMHAMH
�r2Primar ðS2Þ

The Primar stage is followed by PrAnF and SmAnF (Eqs. (S3)–(S4)),
which represent preantral and small antral follicles, respectively.
These stages and all subsequent follicular stages represent
volumes instead of numbers of follicles. Thus, we multiply the
transfer term from Primar to PrAnF in (S3) by a parameter for the
average volume per preantral follicle (vol2). A follicle which
ultimately releases its ovum spends several months (Nussey and
Whitehead, 2001) developing from a preantral follicle into an
ovulatory follicle, Ov in (S8). During that time the maturing
follicle acquires FSH receptors and its future growth becomes
gonadotropin dependent as indicated by the decay term in (S3),
and the growth terms in (S4). These terms have the form of an
increasing Hill function of FSH in agreement with Zeleznik (2004)
who suggested that FSH levels must rise above a threshold to
initiate follicular development. Thus the sustained growth of the
small antral stage, SmAnF in (S4), depends on FSH attaining
a threshold serum concentration. The exponents a and b are

referred to as Hill coefficients and we determine these parameter
values through our estimation procedure

d

dt
PrAnF ¼ vol2 � r2 � Primar�r3

FSHa

Kma
F1þFSHa PrAnF ðS3Þ

d

dt
SmAnF ¼ r3

FSHa

Kma
F1þFSHa PrAnF

þ r4
FSHb

Kmb
F2þFSHb

�r5

" #
SmAnF ðS4Þ

At the beginning of a woman’s monthly cycle, 6–12 follicles
are recruited from the pool of early antral follicles to grow under
the influence of FSH and LH with the opportunity to reach
ovulatory size (Fig. 2). The growth of the recruited follicles, ReF

in (S5), depends on SmAnF and on FSH reaching an early follicular
phase threshold, see (S5). AMH is thought to decrease the FSH-
sensitivity of late antral follicles (see (S6)), playing a role in the
selection of the dominant follicle (Visser et al., 2006). Typically
one follicle is selected to be dominant and then to release its
ovum in response to a surge of LH. Ovulation and luteinization
transform the dominant follicle into the corpus luteum which
produces P4 to prepare the endometrium for pregnancy. If
fertilization does not occur, the corpus luteum regresses, men-
struation follows and a rise in FSH marks the beginning of the
next cycle. The state variables in (S5)–(S12) represent tissue
volumes of eight distinct stages of the ovary during the follicular
and luteal phases of the cycle (see Harris-Clark et al., 2003). ReF,
GrF and DomF denote the recruited follicles, the growing follicles
and the preovulatory or dominant follicle, respectively. Ov repre-
sents a periovulatory stage and Luti, i¼1,y,4, denote four luteal
stages. Since clearance from the blood of the ovarian hormones is
on a fast time scale, we assume that blood levels of E2, P4, InhA,
InhB, and AMH are at quasi-steady state (Keener and Sneyd, 2009)
as did Bogumil et al. (1972a). Hence, we take these concentrations
to be proportional to the tissue volumes during the appropriate
stages of the cycle giving the five auxiliary equations (A1)–(A5)

d

dt
ReF ¼ r5 SmAnFþ c1

FSHg

Kmg
F3þFSHg�c2LHd

" #
ReF ðS5Þ

Fig. 2. Depicted are the stages of follicular development as modeled by our system of equations. The follicular stages included in our model are primordial follicles,

primary follicles through the ovulatory follicle and corpus luteum. Arrows between each stage represent a transition from one follicle type to the next. Arrows pointing

away from follicles represent hormones secreted by these follicles. FSH and LH are produced and released by the hypothalamus/pituitary. Arrows pointing from FSH and LH

represent the effects of these hormones on follicle growth and transition. The dashed arrow pointing from AMH indicates the inhibitory role that AMH plays on the

primordial to primary transition.
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d

dt
GrF ¼ c2LHd ReFþ c3

FSH

1þ AMH
KiAMH

�c4LH

" #
GrF ðS6Þ

d

dt
DomF ¼ c4 LH � GrF�c5LHo DomF ðS7Þ

d

dt
Ov¼ c5LHo DomFþc6LH � DomF�c7 Ov ðS8Þ

d

dt
Lut1 ¼ c7 Ov�k1 Lut1 ðS9Þ

d

dt
Lut2 ¼ k1 Lut1�k2 Lut2 ðS10Þ

d

dt
Lut3 ¼ k2 Lut2�k3 Lut3 ðS11Þ

d

dt
Lut4 ¼ k3 Lut3�k4 Lut4 ðS12Þ

In terms of these stages, the ovarian hormones are given by

E2 ¼ e0þe1GrFþe2DomFþe3Lut4 ðA1Þ

P4 ¼ p0þp1 Lut3þp2 Lut4 ðA2Þ

InhA¼ h0þh1 DomFþh2 Lut2þh3 Lut3 ðA3Þ

InhB¼ j0þ j1 SmAnFþ j2 Ov ðA4Þ

AMH¼ a1 Primarþa2 PrAnFþa3 SmAnF ðA5Þ

The ovarian hormones regulate the synthesis and release of
FSH and LH by the hypothalamus and pituitary as described by
four differential equations (S13)–(S16), which are similar to the
equations in Harris-Clark et al. (2003). The state variables RPLH

and RPFSH represent the amounts of these hormones in the
pituitary and LH and FSH represent the blood concentrations of
these hormones. The biological literature (Karsch et al., 1973; Liu
and Yen, 1983 or Yen, 1991) indicates that LH exhibits a biphasic
response to E2, with low concentrations of E2 inhibiting and high
levels of E2 stimulating LH serum concentrations. To capture this
our model assumes that the effect of E2 on LH synthesis is
different than the effect on LH release (Schlosser and Selgrade,
2000), i.e., E2 inhibits release (see the denominator of the second
term in (S13)) but at high levels E2 promotes synthesis (see the

Hill function in the numerator of the first term of (S13)). On
the other hand, P4 inhibits LH synthesis but promotes release
(Schlosser and Selgrade, 2000). The release term appears in (S13)
as a decay term and in (S14) as a growth term, where it is divided
by blood volume v. Eqs. (S15)–(S16) for FSH are similar except the
synthesis term has InhA and InhB inhibition. Because hormone
synthesis is biochemically more complicated than release, the
time-delay parameters dE, dP, dInhA and dInhB are assumed only for
the synthesis terms and describe the periods between the time
when changes in serum levels of E2, P4 and Inh occur and the
time when subsequent changes in LH and FSH synthesis rates
occur. Based on results of previous work of Harris-Clark et al.
(2003), Margolskee and Selgrade (2011) and Schlosser and
Selgrade (2000), a Hill coefficient of 8 provides the appropriate
steepness for the LH synthesis curve in (S13) so that simulations
will closely approximate LH data in the literature (Welt et al.,
1999; McLachlan et al., 1990)

d

dt
RPLH ¼

V0,LHþ
V1,LHE8

2ðt�dEÞ

Km8
LH þE8

2ðt�dEÞ

1þP4ðt�dPÞ=KiLH,P

�
kLH½1þcLH,PP4�RPLH

1þcLH,EE2
ðS13Þ

d

dt
LH¼

1

v

kLH½1þcLH,PP4�RPLH

1þcLH,EE2
�clLH LH ðS14Þ

d

dt
RPFSH ¼

VFSH

1þ
InhAðt�dInhAÞ

KiFSH,InhA
þ

InhBðt�dInhBÞ

KiFSH,InhB

�
kFSH½1þcFSH,PP4�RPFSH

1þcFSH,EE2
2

ðS15Þ

d

dt
FSH¼

1

v

kFSH½1þcFSH,PP4�RPFSH

1þcFSH,EE2
2

�clFSH FSH ðS16Þ

3. Methods

3.1. Computational methods

Numerical computations are performed using Matlab version
7.12 on a quad-core PC equipped with a 7th generation Intel chip

Table 1
Summary of grid-refinement study of phase shift in time direction of numerical simulation after integrating from age 20 to 50 using ddeRK4.

Step size (day) Phase shift (day)

0.1 0

0 0.02 0.04 0.06 0.08 0.1
−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

 Step size

 P
ha

se
 S

hi
ft

Observation
Powerfit

0.05 0.2161

0.025 0.2415

0.0125 0.2436

Column 1 is the step size used in integration and Column 2 is the difference in day of LH peak (phase shift) at the end of 30 yr when

compared to the solution obtained using the step size of 0.1 day. Fitting a simple power function (aþb xc) to these data gives an intercept of

a¼0.2438 day, which implies a phase shift for the simulation with step size 0.1 approaches 0.2438 day with successively smaller step sizes.
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and 8.00 GB installed RAM. Delay differential equations are solved
using Matlab’s built-in delay differential equations solver dde23,
which numerically integrates delay differential equations with
constant delays. It employs the Runge Kutta (2,3) pair to perform
a variable step integration, and uses a Hermite cubic interpolant
to determine lagged values from stored history (Shampine and
Thompson, 2001). When equations are decoupled, and the result
produces a smaller system of equations with no delays, this
system is integrated using Matlab’s ode23.

Numerical drift can result when the local truncation errors of a
numerical approximation are compounded with each iteration,
causing the numerical approximation to drift away from the true
solution (Ralston and Rabinowitz, 1978). Numerical drift resulting
during numerical integration will accumulate over longer periods
of integration. The extent of numerical drift is dependent upon
the step size used during integration, with smaller step sizes
resulting in less numerical drift. Thus, the extent of numerical
drift can be analyzed with a grid-refinement study. For periodic
solutions of differential equations, numerical drift can present
itself as a phase shift in the time direction. Since solutions of our
system that are of interest are exponentially attracting, we expect
to see numerical drift primarily in the time direction.

To determine the extent of numerical drift of Runge Kutta
methods on our model, we performed a grid-refinement study
using a fixed step 4th order Runge Kutta method for delay
differential equations which we coded and implemented in
Matlab. We refer to this integrator as ddeRK4 (Margolskee,
2012). The solutions obtained by using different time steps in
the integrator ddeRK4 were compared to determine the extent of
numerical drift. We found that a step size of 0.1 day limits the
numerical drift in the time direction to less than 0.25 day when
the model is integrated over a period of 30 yr, from age 20 to 50
(see Table 1). When the phase shift in the time direction is
accounted for, i.e., the solution profiles are centered at the LH

peak, then a time step of 0.1 day limits the deviation in the
solution profiles to less than 0.5% for integration spans of more
than 30 yr. In an analogous grid refinement study, the numerical
drift in the non-cycling stages (Primor and Primar) was observed.
These stages are affected by numerical drift to a lesser extent than
the monthly cycling stages. The numerical drift in the solution
profiles for Primor and Primar can be limited to less than
0.1% across the 30 yr span by using a stepsize of 80 day during
integration.

The longest time span of integration reported here is from age
20 to 51, but only the non-cycling equations (Primor and Primar,
see Eqs. (S1) and (S2)) are integrated for this time span (see
Section 3.8). These equations also contain no delay, so they are
simulated using Matlab’s ode integrator ode23. The numerical
drift in the magnitudes of these non-cycling equations can be
limited to less than 0.1% when a step size of 80 day is used. So we
integrate this small system using ode23 with the option MaxStep
set to 80.

The monthly cycling differential equations (Eqs. (S3)–(S16))
are simulated for two-month time spans (see Section 3.8). The
numerical drift in the time direction over this short time span is
negligible. The numerical drift in the magnitude of the solution
profiles can be limited to less than 0.5% by using a time step of
0.1 day. So we integrate these equations using dde23 with the
option MaxStep set to 0.1.

3.2. Parameter identification (PID)

Estimating the 66 parameter values in system (S1)–(S16) and
auxiliary equations (A1)–(A5) requires multiple data sets and
considerations of parameter sensitivity and correlation. Data are
available in the biological literature for blood levels of the

pituitary and ovarian hormones but not for the state variables
of Eqs. (S3)–(S12). However, some information is known about
realistic values for volumes of ovarian stages (e.g., Nussey and
Whitehead, 2001). Attempting to be faithful to the biology and to
use valid numerical techniques leads us to develop an ad hoc,
iterative procedure for estimating the parameters. Some details of
our process are described in the following sections and in
Appendix A and the resulting parameter sets are included in
Appendix B.

3.3. Least squares data fitting

In least squares data fitting, the objective function to be
optimized has the form (Kelley, 1999)

f ð q
!
Þ¼

XM
j ¼ 1

9dj
�yðtj; q

!
Þ92
¼ Rð q
!
Þ
T Rð q
!
Þ

where q
!

is the parameter vector, y is a single model output and d

is the data sampled at M time points. R is a column vector of
length M with components ðdj

�yðtj; q
!
ÞÞ and is referred to as the

residual between the data and the model output. If the output is a
vector of observations y

!
of length N with components yi then we

have

f ð q
!
Þ¼

XM
j ¼ 1

J d
!j

� y
!
ðtj; q
!
ÞJ2

2

¼
XM
j ¼ 1

XN

i ¼ 1

9dj
i�yiðtj; q

!
Þ92
¼ Rð q
!
Þ
T Rð q
!
Þ

where R is of length MN with components ðdj
i�yiðtj; q

!
ÞÞ.

Fitting the model output to data involves finding a q
!

that
minimizes the function f ð q

!
Þ. There are many optimization algo-

rithms that can be implemented to find a minimum to a least
squares objective function. Public domain codes for many of these
optimization algorithms can be found online in the Numerical
Analysis and Modelling software repository at Zuse Institut Berlin
(ZIB) (Zuse Institut Berlin,). These codes are based on the algo-
rithms presented in a book by Deuflhard (2004). Of these codes
we explored the use of NLSQ_ERR, which is an implementation of
unconstrained Gauss–Newton with an error oriented convergence
criterion. In order to insure that the parameters of our system are
positive, we optimize the natural log of the parameter values and
then exponentiate after optimization.

3.4. Data used during PID and model comparison

Data used during parameter identification are for primordial
and primary follicle counts, and plasma concentrations of AMH,
E2, P4, InhA, InhB, LH, and FSH. All data are obtained from the
literature (Hansen et al., 2008; Hagen et al., 2010; Lee et al., 1996;
Sowers et al., 2008; Tehrani et al., 2010; van Beek et al., 2007; van
Disseldorp et al., 2008; Welt et al., 1999). Data for follicle counts
and AMH are for ages 20–51 yr. Data for E2, P4, InhA, InhB, LH,
and FSH are for women between age 20 and 34 yr. Additional data
for InhB and FSH are for women between age 35 and 46 yr. For
more information on the residuals used during parameter identi-
fication see Appendix A.

Hansen et al. (2008) reported data for gonadotropin indepen-
dent follicle counts. We take these data to represent the sum of
primordial and primary follicle counts. The data were reported in
a table along with the age of the subjects. The number of subjects
between age 20 and 51 yr totaled 103. We refer to this data as
Hansendata (see Fig. 3).
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Plasma concentration data for AMH from women of age
20–51 yr are taken from several sources (Hagen et al., 2010; Lee
et al., 1996; Sowers et al., 2008; Tehrani et al., 2010; van Beek
et al., 2007; van Disseldorp et al., 2008). No single clinical data set
provided ample samples for all ages. Some of the data sets
spanned only a portion of the ages of interest, and all but one of
the data sets had sparse sample sizes for most of the ages. van
Beek et al. (2007) had data spanning ages 20–38 yr, each age
having a sample size of less than 10. Data from van Disseldorp
et al. (2008) covered ages 26–47, and only six of the 22 ages had
sample sizes of at least 10. Hagen et al. (2010) had data spanning
the entire range of interest, however, all but one age had sample
sizes of 6 or less. Data from Tehrani et al. (2010) spanned ages
20–50, but only six of these ages had sample sizes of at least 10.
Data from Sowers et al. (2008) were an exception, having a
sample size of 50 people for each of the ages reported, however,
the data set only covered ages 42–47. Combining the data from
these six sources results in a data set covering ages 20–51, where
all but four of the ages have sample sizes of at least 10 and most
ages have sample sizes greater than 20. AMH data sets were in ng/
mL except for Hagen which was converted from pmol/L to ng/mL
using the conversion 1 pmol/L¼7.14 ng/mL (Hampl et al., 2011).
The resulting data set is a set of average AMH concentrations by
age for ages 20–51, obtained from a compiled sample of 849
points. We refer to this compiled data as AMHdata (see Fig. 3).

Daily plasma concentrations of E2, P4, InhA, InhB, LH and FSH
for women from ages 20–34 (n¼23) are taken from Welt et al.
(1999), and we use this data to compare the model solved at age
30. We refer to this data as E2data, P4data, etc. InhB and FSH daily
plasma concentrations for women from ages 35–46 (n¼21) from
Welt et al. (1999) are used to compare the model solved at age 40.
We refer to this data as InhBdata,older and FSHdata,older. We include
InhB and FSH data for older women in order to capture the
decrease of InhB and increase of FSH with age (Welt et al., 1999;
Hale et al., 2007; Robertson et al., 2008) that make these
hormones markers of reduced ovarian function. We do not
include hormones from the older age group that showed no
significant difference between the two age groups, i.e., LH and
P4 (p-value40:05, not significant) (Welt et al., 1999). InhA
showed a significant difference ðp-valueo0:04Þ between the
two age groups at only one data point (between ovulation and
the luteal phase) (Welt et al., 1999), but we did not consider this
to be an important characteristic to capture with our model, thus
InhA data for the older women is not included in our comparison.

Welt et al. (1999) noted a significant increase in follicluar phase
E2 in the older group as compared with the younger group
ðp-valueo0:02Þ, however, other sources have cited decreased E2
concentrations in the menopausal transition (Broekmans et al.,
2009; Burger et al., 2007), or no significant difference between
women of 22–34 yr and those of 41–46 yr old (p-value40:05, not
significant) (van Zonneveld et al., 2003). Thus we do not include
E2 concentrations from the Welt data for the older women in our
analysis.

3.5. Sensitivity, correlation, and uncertainty quantification

The model presented here has a large number of parameters,
and a number of state variables for which there are no direct
experimental data. Attempting to identify all of the parameters at
once leads to poor convergence of the numerical optimization
schemes, and limited parameter identifiability. In the presence of
poor convergence, it may be helpful to examine the sensitivity of
the model to the parameters and correlations among the para-
meters. Insensitivity of a model to a parameter means that large
changes in the parameter have little effect on the model output.
This leads to greater uncertainty of the optimal parameter value
and can prevent an optimization algorithm from converging. If a
pair of parameters is correlated then changing one parameter is
related to changing the other parameter, which may limit para-
meter identifiability.

The sensitivity of a model output y with respect to a parameter
set q
!

is the matrix @y=@ q
!

(also called the Jacobian of y) evaluated
at the time points t1,t2, . . . ,tM associated with the data (Banks
et al., 2007)

Sð q
!
Þ¼

@y

@ q
! ¼

@yðt1 ; q
!
Þ

@q1

@yðt1 ; q
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Þ

@q2
� � �
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Þ
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Þ

@q2

^ &
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!
Þ
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!
Þ

@qp

26666666664
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It describes the sensitivity of the model to the parameters at the
chosen time points. Here p is the number of parameters in q

!
and

M is the number of data points, which makes S a matrix of size
M� p. If the model output is a vector y

!
of length N then the

sensitivity matrix will be a matrix of size MN� p. Note that
sensitivities will vary depending on the parameter values, q

!
,
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Fig. 3. Eqs. (S1)–(S2) and (A5) are solved using the optimized parameters (Table B1, Appendix B), starting at age 20 and using the initial conditions Primor0¼265,000, and

Primar0¼100. The sum of the model solutions Primor and Primar is log transformed and plotted against logðHansendataÞ (Hansen et al., 2008). The model for AMH is plotted

against composite AMHdata (Hagen et al., 2010; Lee et al., 1996; Sowers et al., 2008; Tehrani et al., 2010; van Beek et al., 2007; van Disseldorp et al., 2008).
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and the times, t1, . . . ,tM , at which they are evaluated. For compar-
ison across parameters and outputs of differing magnitudes, it is
often helpful to consider the relative sensitivities which are
obtained by multiplying each element @yðti; q

!
Þ=@qj by qj=yðti; q

!
Þ

(Olufsen and Ottesen, 2012). The five most sensitive parameters
in our model according to the regular sensitivities are c6, cLH,E, c2,
cFSH,E and c3. In contrast, the most sensitive parameters according
to the relative sensitivities are d, KmLH, c1, r5, and cLHP. This
difference in the sensitivity rankings is due to the magnitudes
of the parameters. The parameters cLH,E, cFSH,E, c2 and c3 are
smaller in magnitude than many of the other parameters (see
Tables B2 and B3 in Appendix B), so it is reasonable that a small
absolute change in these parameters could result in a larger
change in the model output. The relative sensitivities effectively
look at how the percent change in the parameters affects the
model output.

The covariance of parameters can be used to determine
correlations among parameters and to quantify the uncertainty
in a parameter set. Normally covariance of a set of random
variables would be estimated from a sample distribution of the
variables, but here we do not have any information about how q

!

varies with the model output. We do, however, have information
about how the model output varies with changes in q

!
, namely

we know the sensitivity matrix Sð q
!
Þ¼ @y=@ q

!
.

Given knowledge of the sensitivity matrix, Sð q
!
Þ, the covar-

iance matrix, cov, of the parameters q
!

j can be estimated via the
unbiased estimator, dcovð q

!
Þ, given by Olufsen and Ottesen (2012)

and Cacuci (2003)

dcov ¼ s2ðST SÞ�1

Here the variance, s2, is assumed constant and can be estimated as

bs2
¼ RT
ð q
!
ÞRð q
!
Þ=ðn�pÞ

where R is the residual between the model and data, n is the number
of data points (length of R), and p is the number of parameters
(length of q

!
). The square roots of the diagonal entries of the

covariance matrix are the standard errors associated with the
parameters, thus the covariance matrix can be used to estimate
the uncertainty in the choice of parameters. The covariance matrix
can also be used to determine correlations among the parameters.
Correlation of parameters can be given by

Cij ¼
covijffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

coviicovjj
p

where cov is the covariance matrix, and can be estimated using dcov
in place of cov.

The correlation matrix C is symmetric with 1’s on the diagonal,
and values between �1 and 1 elsewhere. The closer the Cij entry
is to 71, the more correlated are the parameters qi and qj. A
reasonable rule proposed in Olufsen and Ottesen (2012) is to
consider all entries greater than 0.9 in magnitude to imply
correlation. Note that STS must have full rank in order to be
inverted, and since rankððST SÞp�pÞ ¼ rankðSn�pÞrminðn,pÞ, it is
necessary that p be less than n. There need to be at least as many
data points as there are parameters. If there are too many
parameters compared to data, then there will necessarily be
correlations among the parameters. If a pair of parameters is
determined to be correlated, it may be possible to decouple the
parameters or reduce the parameter set through nondimensiona-
lization (Sonin, 2001).

3.6. Model-specific correlations

The parameter rsurv shows correlations with a1 and r2 (see
Eqs. (S1)–(S2) and (A5)), with correlation coefficients of 0.938 and
0.997, respectively. Thus we estimate rsurv, and fix it during

optimization. The parameter rsurv is estimated from the decline
of Hansendata and the estimated monthly pool of primary follicles.
The approximate decline of the primordial pool from at age 20 is
22,000 per year (taken as the slope of the power fit to data in
Hansen et al., 2008), or approximately 1833 per month. According
to Nussey and Whitehead (2001), it takes about 120 day
(4 month) for a new primary follicle to reach the preantral stage
(0.2 mm in diameter). If we assume there are 100 primary follicles
at any time in a woman of age 20, developing over a course of four
months, then there is an average of 25 follicles per month leaving
the primary pool. The difference between the average decrease in
the primordial stage and the average decrease in the primary
stage is modeled as atresia in the primordial to primary transi-
tion. The difference of 1833 primordial follicles leaving the
primordial pool per month, and 25 follicles per month maturing
in the primary stage, means approximately 1.4% of the primordial
follicles leaving the primordial pool survive through the primary
stage and 98.6% are lost to atresia. We model this loss as a
survival factor in the primordial to primary transition. From this,
we have rsurv ¼ 0:014.

The parameters r2 and a1 (Eqs. (S2) and (A5)) are correlated
with a correlation coefficient of 0.937. The correlation between r2

and a1 comes from the fact that a1 determines the magnitude of
AMH in terms of the magnitude of Primar, which is governed by
r2. Fixing r2 during optimization results in unwanted transient

behavior in the solution profile for Primar when any of the
parameters in the growth term for Primar are changed. For
example, decreasing r1 without changing r2 creates a steep initial
drop in the profile for Primar, while increasing r1 without
changing r2 creates a steep initial climb. In order to avoid this
transient behavior, we replace r2 in the equation for Primar with

r2 ¼br2 �
rsurv � r1 � 265,000

1þcprm � 265000þcAMH � a1 � 100

and fix br2 during optimization. The value of 0.01 for br2 eliminates
the unwanted transient behavior (at this value the right hand side
of Eq. (S2) is zero at age 20).

Correlation of parameters in the remaining ovarian system
equations (Eqs. (S3)–(S12)) is due in part to the fact that we do
not have data for the ovarian stages themselves, but only for the
ovarian hormones modeled by the auxiliary equations (A1)–(A4).
Theoretically, the follicular stages could grow to any magnitude
during optimization, since the auxiliary coefficients ultimately
scale them to fit the data. To avoid this, we determine approx-
imate values for the auxiliary coefficients and fix them during
optimization. The auxiliary coefficients represent hormone pro-
duction per ovarian stage volume, and thus can be approximated
with knowledge of the hormone levels during the different stages
and approximate volumes of each follicular stage. The volume
of the dominant follicle at ovulation, Ov, is taken to be 4000 mm3

assuming that it is approximately a sphere of diameter 20 mm
(Nussey and Whitehead, 2001). Assuming that the ovary is largest
around the time of ovulation, we also take Lut1 to be 4000 mm3.
Then we take the maximum values for the other six follicular
stages to differ by increments of 1000 mm3 as follows:
ReF ¼ Lut4 ¼ 1000, GrF ¼ Lut3 ¼ 2000, and DomF ¼ Lut2 ¼ 3000.
Finally, we take the maximum for SmAnF to be 10 mm3. Assuming
these maximum values for the follicular stages, and noting the
hormone levels of the data from Welt et al. (1999) during these
different phases of the cycle, we are able to determine approx-
imate values for the auxiliary coefficients that will result in the
necessary hormone levels. The auxiliary coefficients (see Table B4,
Appendix B) are fixed during optimization so that the follicular
stages remain at realistic sizes.
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Additional correlations exist among parameters for which we
have no empirical data. For these correlations, we fix the least
sensitive parameters. The parameters V1,LH and KmLH (see Eq.
(S13)) are correlated with correlation coefficient 0.946. V1,LH is
the less sensitive parameter, thus we fix it during optimization.
The parameter VFSH is correlated with KiFSH,IhA and KiFSH,IhB (see Eq.
(S15)) with correlation coefficients 0.974 and 0.967. KiFSH,IhA and
KiFSH,IhB are correlated with correlation coefficient 0.916. Of these
parameters, VFSH is the most sensitive (according to relative
sensitivities), thus KiFSH,IhA and KiFSH,IhB are fixed during optimiza-
tion. The parameters KmF2 and r5 are correlated with correlation
coefficient 0.988, and r5 is more sensitive. The parameters o and
c5 are correlated with correlation coefficient 0.956, and o is more
sensitive.

3.7. Tests for significance

Tests for significant difference between the model simulations
at age 30 versus age 40 (see Section 4.2) are performed by using
two-tailed two sample t-tests on the means from independent
samples of 500 Monte Carlo simulations for each of the two ages.
The Monte Carlo simulations are performed by sampling para-
meters from log-normal distributions with means and standard
deviations corresponding to the obtained parameter values
and standard errors, respectively (see Appendix B). Only the
subset of parameters that are varied during optimization are
sampled during Monte Carlo simulation. The means and standard
deviations of the simulations are computed separately for each

model output (i.e., each hormone or follicular stage), and for each
day of the cycle. For each model output there is a family of 28
hypotheses, each corresponding to a day of the monthly cycle.
Thus we use the Bonferroni correction (Ott and Longnecker, 2010)
to control the overall error rate, i.e., for an overall significance
level of a, or an overall confidence of 100 � ð1�aÞ%, we reject the
individual null hypotheses with significance level a=28. We use
the significance levels of a¼ 0:05 and 0.01 to be significant and
very significant, respectively. Hence, in order to achieve overall
confidence of 95% and 99%, we restrict the individual p-values to
be less than 0:05=28� 0:00179 and less than 0:01=28� 0:000357,
respectively.

3.8. Model-specific treatment of multiple time scales

The primordial pool of follicles declines over the lifetime, a
timespan of decades. The decline of AMH from mid-reproductive
age to menopause follows a similar trend. Data for the primordial
pool and AMH are thus on the order of years. The remaining
hormones in our model, E2, P4, InhA, and InhB produced in the
ovaries and LH and FSH produced in the pituitary, display daily
variations and cycle monthly. The follicular stages that respond to
the pituitary hormones (PrAnF and subsequent stages, see Eqs.
(S3)–(S12)) will also exhibit monthly cycling behavior. Therefore,
our model exhibits the time scales of days and of years.

The multiple time scales in this model have the potential of
creating numerical and computational difficulties. In order to
approximate the daily data of the monthly cycling hormones (E2,
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Fig. 4. Hormone profiles from the model solved at ages 30 (red solid curves) and 40 (black dashed curves) are plotted against data (red dots) from Welt et al. (1999) for

women ages 20–34 yr. Note that the hormone profiles for LH,E2 , P4 and InhA are very similar between the two ages. LH,E2, P4 and InhA are indicative of the ovulatory

follicle and corpus luteum, which are similar in ovulatory women of these two age groups (Welt et al., 1999; van Zonneveld et al., 2003). (For interpretation of the

references to color in this figure caption, the reader is referred to the web version of this article.)
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P4, InhA, InhB, LH and FSH), the model equations (S1)–(S16) must
be solved with a time step less than 1 day. However, to capture
the declining trend of the primordial pool and AMH throughout a
woman’s lifetime, the model equations must be solved over a
time span of several decades. Integrating the system from age 20
to 50 using Matlab’s dde23 takes over 8 min on a quad-core PC
equipped with a generation 7 Intel chip and 8.00 GB RAM. The
system of differential equations has 66 parameters, an optimiza-
tion scheme that integrates the entire system over this time
period would take over 8 h just to change each parameter once,
let alone converge to an optimal parameter set. This presents a
problem for parameter identification.

In order to use data of the two different time scales in
parameter identification for our system, the parameters a2 and
a3 in Eq. (A5) are set to zero, allowing for the decoupling of
Eqs. (S1), (S2), and (A5) from the rest of the system. This system of
two ordinary differential equations is solved from age 20 to 51
using ode23 and optimized against Hansendata and AMHdata (see
Appendix A for residual used during PID).

Once a parameter set is obtained for this small system (see
Appendix B for parameter values), the remaining equations
(S3)–(S16) and (A1)–(A4) can be solved at any age by using initial
conditions for Primor and Primar obtained from the simulation to
Eqs. (S1)–(S2) integrated up to the required age. The initial
conditions for the remaining state variables (see Eqs.
(S3)–(S16)) can obtained at a specific age by fixing Primor and
Primar and integrating the remaining equations for two-month
time spans until the stable attractor has been reached. Centering
the LH peak at day 14, the value of a stage at day 1 is taken to be
the initial condition for that stage. When the change in initial
condition from one cycle to the next is less than 1%, we assume
we have found the stable attractor. The initial conditions for age
20, 30 and 40 are included in Table B5.

Obtaining parameter values for the remaining parameters
involves solving the delay differential equations (S3)–(S16) using
dde23 and auxiliary equations (A1)–(A4), for two-month time
spans starting at age 30, i.e., time t30¼30�365 day and at age 40,
i.e., time t40¼40�365 day. These solutions are then fit to data for
women of ages 20–34 and 35–46, respectively, from Welt et al.
(1999). For more information on the residuals used during
optimization see Appendix A.

In situations where there are multiple stable attractors for the
same parameter set, there is a real possibility that simulations
starting at age 40 might settle on a different stable attractor than
simulations starting at age 30. For any parameter set tested for
this model, numerical experiments indicate that there appears to
be just one stable attractor for the total time span. Updating the
initial conditions at each step during optimization insures that
the solution profile is close to this stable attractor. Also, simula-
tion of our model from age 30 to 40 using the reported parameter
set (see Appendix B) is in agreement with the model simulated
starting at age 40 with initial condition reported in Appendix B.

Setting a2 and a3 equal to zero is a simplification of the model
that is made to decrease computational cost during parameter
identification. However, there is some biological evidence for
emphasizing the primary follicle pool. Maciel et al. (2004)
reported that at any time during the monthly cycle, there are
between two and three times as many primary follicles as there
are preantral and small antral follicles together. Though indivi-
dual small antral follicles express more AMH than individual
preantral and primary follicles (Visser et al., 2006), the relative
proportions secreted by each cohort are not known.

Since preantral and small antral follicles are cycling monthly,
daily levels of AMH throughout the menstrual cycle may be
helpful in identifying parameters a2 and a3 as compared to a1.
However, there is some debate over whether AMH levels exhibit

significant daily variability across the menstrual cycle (La Marca
et al., 2006; Wunder et al., 2008). Younger women appear to show
more variability than older women (Sowers et al., 2010). In this
study we are interested in average monthly AMH, as this is the
marker for follicle reserve. We believe that modeling AMH as
proportional to the primary follicle count is sufficient for this end.

4. Simulations and results

4.1. PID of the primordial to primary transition and AMH

Setting a2 and a3 equal to zero in Eq. (A5) allows for
Eqs. (S1)–(S2) and auxiliary equation (A5) to be decoupled from the
larger system, as they no longer depend on the remaining equations.
This smaller system is solved from age 20 to 51 and optimized against
the follicle data, Hansendata, and AMH data, AMHdata.

The initial condition for the primordial pool is taken from Hansen
et al. (2008) (see the equation on p. 703) as the power fit to data
evaluated at age 20 giving 265,000 follicles. The initial condition for
the number of primary follicles at age 20 is taken to be 100. This
value is derived from Broekmans et al. (2009) which asserted that
there are between 20 and 150 early growing follicles (sized
0.05 mm–2 mm in diameter) at any time in a woman of age 25–
40. According to Nussey and Whitehead (2001), preantral and small
antral follicles are between 0.2 mm and 2 mm in diameter, and
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Fig. 5. Hormone profiles from the model solved at ages 30 (red solid curves) and 40

(black dashed curves) are plotted against data (red dots) for younger women (ages

20–34) and data (black squares) for older women (ages 35–46) from Welt et al. (1999).

In the older women, early to mid follicular phase (days 1–9) InhB is lower and early to

mid follicular phase FSH is higher. InhB is produced by early growing follicles which

have declined in number between age 30 and 40. The rise in follicular phase FSH is in

response to the decreased InhB. (For interpretation of the references to color in this

figure caption, the reader is referred to the web version of this article.)
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according to Maciel et al. (2004) there are between two and three
times as many primary follicles as there are preantral and small
antral combined. Thus, using the maximum estimate in Broekmans
for age 20, we assume that there are approximately 100 primary
follicles and 50 preantral and small antral follicles at age 20.

Correlation of parameters was handled as described in Section 3.6.
The remaining parameters represent an uncorrelated set, and the
numerical optimization algorithm NLSQ_ERR applied to this smaller
system converges. The optimized parameters for this smaller system
are included in Table B1 of Appendix B. Model output for
Eqs. (S1)–(S2) and (A5) are plotted against data in Fig. 3.

4.2. PID of monthly cycling follicular stages and hormones, and key

changes with age

Eqs. (S3)–(S16) can be solved at any age by using initial conditions
for Primor and Primar obtained from the solution to Eqs. (S1)–(S2)

evaluated at the required age. The simulations for Eqs. (S1)–(S2)
evaluated at age 30 (t30) and 40 (t40) give the approximate
primordial and primary follicle counts as Primorðt30Þ ¼ 108,000
and Primarðt30Þ ¼ 72:5 for age 30, and Primorðt40Þ ¼ 19,000 and
Primarðt40Þ ¼ 27:6 for age 40. The initial conditions for the remain-
ing stages for a certain age can be obtained by fixing Primor and
Primar, which vary little on the time scale of months, and integrating
the remaining equations until they have approached the stable
attractor. The model simulations are centered with the LH peak at
day 14 of the cycle, and day 1 is taken to be the initial condition.
This procedure for determining the initial conditions is done
whenever the parameter set is varied, and thus must be done at
each step in an optimization scheme.

Using the numerical optimization algorithm NLSQ_ERR, we
observed that the changes in the logs of the parameters with each
iteration converged to less than 10�3. Since the logs of the
parameters were optimized (see Section 3.3), this signifies that
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Fig. 6. Comparison of follicular stages solved at ages 30 (red solid curves) and 40 (black dashed curves). The solution profiles for PrAnF, SmAnF, and ReF are significantly
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the parameters have converged to within 0.1%, and so can be
reported to within three significant digits. The parameters are
reported in Tables B2–B4. The standard errors (see Section 3.5)
associated with this parameter set are also included in Appendix
B, and provide an indication of the uncertainty in the presented
parameter values. The parameter set reported here provides the
smallest observed residual. Running 5000 Monte Carlo simula-
tions, sampling parameters from log-normal distributions with
means and standard errors as in Appendix B, revealed no para-
meter set with smaller residual. The simulations obtained from
this parameter set are included in Figs. 4–6.

The simulated hormone profiles for LH, E2, P4 and InhA are
plotted in Fig. 4 against data for younger women, and the
hormone profiles for FSH and InhB are plotted in Fig. 5 against
data from Welt et al. (1999) for both younger and older women.
Fig. 6 contains the solution profiles for the follicular stages PrAnF–Lut4

(the states associated with Eqs. (S3)–(S12)).
The hormone profiles for LH, E2, P4 and InhA (Fig. 4) are not

significantly different for the two age groups, but InhB and FSH

(Fig. 5) are very significantly different (overall confidence 99%).
The simulations exhibit lower InhB and higher FSH during the
follicular phase for age 40 as compared to age 30, and these
differences are similar to those observed in the Welt et al. (1999)
data. The Welt data also exhibit differences in luteal InhB. We
may be able to model this difference by including additional
stages in the definition of InhB. However, since observations
reported by others (e.g., van Zonneveld et al., 2003) indicate that
luteal InhB is not significantly different between the two age
groups, we decided not to complicate the model with features
that do not necessarily reflect the physiology.

InhB is produced by early growing follicles, which have
declined in number between ages 30 and 40 (Fig. 6), thus the
solution profile for InhB is lower at age 40 than it is at age 30
(Fig. 5). Since InhB inhibits FSH synthesis (see Eq. (S15)), the
decreased InhB causes an increase in follicular phase FSH. These
differences in InhB and FSH simulations correspond to differences
in the data (Fig. 5). LH,E2,P4 and InhA are indicative of the
ovulatory follicle and corpus luteum which are similar in ovula-
tory women of these two age groups (van Zonneveld et al., 2003).
Increased sensitivity to FSH of growing follicles caused by
decreased AMH (see Eq. (S6)) allows for full development of the
growing follicles, and thus the dominant follicle, ovulatory follicle
and corpus luteum in older women. The volumes of stages GrF,
DomF–Lut4 are not significantly different between age 30 and 40
(overall confidence 95%), and this similarity may be observed in

Fig. 6. Since these stages contribute to the hormones E2, P4 and
InhA (see Eqs. (A1)–(A3)), these hormones are similar between the
two age groups and this similarity extends to the LH profiles
because LH depends only on E2 and P4.

5. Exogenous AMH, AMH agonists and AMH antagonists

The role that AMH plays in the primordial to primary transi-
tion suggests several uses of AMH for fertility treatment, for
delaying menopause and for contraception. Since AMH inhibits
the transition of follicles from the primordial to the primary
stages, AMH or an AMH agonist could be given to premenopausal
women to slow this transition and hence may delay the loss of
fertility due to low antral follicle count (Broekmans et al., 2009).
This treatment would be for women who are waiting to get
pregnant until they are older and are worried about the decline of
fertility with age due to declining follicle reserve. In the extreme
case, if the transition is slowed enough then the number of
growing follicles may be decreased enough to prevent ovulation
during treatment. Thus AMH or an AMH agonist could be used as
a contraceptive. Alternatively, an AMH antagonist could be given
to women who are trying to become pregnant but face difficulty
due to low antral follicle count. This would be a short term
fertility treatment and could possibly be combined with existing
fertility treatments such as FSH administration. Our model can be
used to simulate outcomes of these treatments. Recall that the
numerical optimization algorithms converged to an optimal
parameter set for the small system (Eqs. (S1), (S2), and (A5)).
Hence the following simulated treatments use an optimal fit to
Hansendata and AMHdata as the control.

5.1. Exogenous AMH treatment to delay menopause

Predictions for treatment with exogenous AMH from age 25 to
35 with doses that would achieve 5 ng/mL and 20 ng/mL
increases in serum AMH are included in Fig. 7. The treatment is
modeled as a constant (5 ng/mL or 20 ng/mL) added to Eq. (A5)
between the ages 25 and 35. The rate of decline of the primordial
pool is decreased during the treatment period, and resumes a
normal course after the treatment is ended. The number of
primary follicles that are developing during the treatment period
is decreased, and this decline is dose-dependent. The 5 ng/mL
treatment delays infertility due to low follicle count by 2 yr, while
the 20 ng/mL treatment delays this by 5 yr. After the treatment is
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ended, normal monthly cycling resumes and behaves as it would
for a woman 2 or 5 years younger, respectively. If the woman
would have stopped ovulating around age 48 without treatment,
she would now stop ovulating around age 50, or age 53, respectively.
Note that these treatments are not expected to prevent infertility due
to factors other than low follicle count.

5.2. Exogenous AMH treatment as a contraceptive

In theory, if enough AMH is given during treatment, the
number of developing primary follicles would decrease to zero.
In order to use AMH as a contraceptive method, the dosage should
be large enough to decrease the primary follicle number to a level
below what is necessary for ovulation. According to Broekmans
et al. (2004), the average age at last child birth (in a population
not applying contraceptive measures) is around 41 yr. This can be
used as a proxy for the age at natural loss of fertility. Broekmans
et al. (2009) cites that the average age at the onset of cycle

irregularity is about 46 yr, and the average age at menopause
(age at final menstrual period) is 51 yr. Our simulations at
these ages correspond to primary follicle counts of 23, 7, and 1.
An AMH treatment that decreases the simulated primary follicle
count to below 23 may be sufficient, but a more conservative
treatment that decreases it to below 7 or 1 is more likely to
prevent ovulation.

Our simulation predicts that a dose of 55 ng/mL AMH is
required to push the primary follicle count of the average 25 yr
old woman down to that of a woman of age 41. To decrease the
primary follicle count to that of a woman of age 46 and 51, doses
of 220 ng/mL and 1300 ng/mL AMH, respectively, are required.
Fig. 8 plots these treatments given from age 25 to 35. This is a
wide range of possible doses required to prevent ovulation. This
range could be used as a starting point for determining the
therapeutic threshold.

The doses of AMH for possible contraceptive use mentioned
here are much higher than levels found naturally circulating in
women, the first being about 10 times, the second about 50 times,
and the third about 300 times the natural level of AMH in normal
mid-reproductive age women. Thus exogenous AMH for the
purpose of contraceptive use may be unrealistic. Studies would
need to be performed on the effects of AMH on other systems in
the body to determine plausibility of exogenous AMH treatments
of this magnitude.

5.3. An AMH antagonist fertility treatment

Fig. 9 includes predictions for treatments with AMH antago-
nists for one year starting at age 35 or at age 40 where the
antagonists block 75% or 95% of AMH action on the primordial to
primary transition. The antagonist action is modeled as a factor of
0.25 or 0.05 multiplying the AMH term in the denominator of Eqs.
(S1) and (S2). The factor represents the percentage of AMH action
not blocked by the antagonist. For the duration of the treatment,
the weaker antagonist increases primary follicle numbers by 8 for
age 35 (a 16% increase) and by 3 for age 40 (a 12% increase). The
stronger antagonist increases primary follicle numbers by 10 for
age 35 (a 20% increase) and by 4 for age 40 (a 15% increase). An
AMH antagonist could be used to increase small growing follicle
numbers. This could be useful by itself, or as part of other fertility
treatments such as exogenous FSH. The AMH antagonist would
increase the number of small growing follicles available to
respond to FSH. Note that these treatments are not expected to
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improve fertility in women who experience infertility due to
factors other than low follicle count.

6. Summary and conclusion

This study presents a model for hormonal regulation of the
menstrual cycle of an adult woman. Our system of 16 non-linear,
delay differential equations with 66 parameters tracks normal
cycling from a woman’s peak reproductive years to menopause. In
order to capture age-related changes in hormone levels and in
cycle behavior, we model the gradual loss of inactive primordial
follicles throughout a woman’s life (Fig. 3) due to atresia or
conversion to the active primary state. The decline in the number
of follicles with age results in a noticeable decrease in AMH that
begins in a woman’s 20’s (Fig. 3) and a decrease in InhB between
age 30 and 40 (Fig. 5). These hormones are produced by preantral
and early antral follicles (Fig. 6). The drop in InhB causes a rise in
follicular phase FSH (Fig. 5). Levels of E2, P4, InhA and LH (Fig. 4)
do not exhibit significant variations between age 30 and 40
primarily because they depend on dominant follicle and corpus
luteum development (Fig. 6).

In order to obtain the 66 model parameters we develop an ad

hoc procedure which results in a model predicting hormonal
levels over multiple time scales. This is accomplished by optimiz-
ing the parameters of the system (S1) and (S2) for the primordial
and primary follicles. Then the output of the optimized model
(S1) and (S2) at any age is used to initiate simulations of the full
system (S1)–(S16) at that age (see Section 4).

The fact that AMH inhibits the transition of follicles from the
primordial stage to primary stage suggests using model simula-
tions with exogenous AMH for this purpose. Fig. 7 shows that
treatments with various doses of AMH may reduce the number of
follicles entering the active pool and, hence, delay menopause as
measured by the number of primordial follicles remaining in the
ovaries. It is not clear that if this hypothesis may be investigated
clinically. Model simulations show that high amounts of AMH are
needed to reduce active follicle numbers to contraceptive levels
(see Fig. 8). Finally, Fig. 9 shows how an AMH antagonist may
temporarily increase the number of small growing follicles which
may improve fertility in a woman who is experiencing infertility
due to low follicle count.

The age at which simulated cycling in hormone levels ceases
seems to be sensitive to parameters and may not represent
the actual mechanism of loss of fertility with age. Changes
to the model that may account for anovulation and the cessa-
tion of cycling would be incorporating thresholds for ovulation
and atresia of the dominant follicle if it fails to ovulate. This
could be accomplished with a threshold function for LH neces-
sary for ovulation or a threshold for the number of follicles
required for dominant follicle selection and ovulation. The
latter option would require tracking the numbers of follicles
that are developing during the preantral through growing
follicle stages. At this point, the model only tracks the numbers
of primordial and primary follicles with the remaining follicle stages
represented as volumes. Such considerations will be topics of
future work.
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Appendix A. Residuals used during optimization

The residual vector used in optimization of Eqs. (S1)–(S2)
and (A5) is

R¼

RPo þ Paffiffiffiffi
n1
p

maxðlogðHansendataÞÞ

RAMHffiffiffiffi
n2
p

maxðAMHdataÞ

24 35
where

RPo þPa
¼ ½logðPrimorþPrimarÞ�logðHansendataÞ� and

RAMH ¼ ½AMH�AMHdata�

and n1, n2 are the sample sizes of Hansendata and AMHdata,
respectively. The error for PrimorþPrimar is computed using log
transformed data because the error in the data is consistent with
a log-normal distribution. The two residuals RPo þPa

and RAMH

are divided by the maximum value of the respective data so that
these terms are on the same scale. The errors are also each
divided by the square root of the number of data points so that
the sum of squared residuals of a large and a small data set are
weighed equally during optimization.

The residual vector used in optimization of Eqs. (S3)–(S12) and
(A1)–(A4) is

R¼

RLH
maxðLHdataÞ

RFSH
maxðFSHdataÞ

RE2
maxðE2dataÞ

RP4
maxðP4dataÞ

RInhA

maxðInhAdataÞ

RInhB

maxðInhBdataÞ

RInhB,40

maxðInhBdata,olderÞ

RFSH,40

maxðFSHdata,olderÞ

266666666666666666664

377777777777777777775

where

RLH ¼ ½LHðt30Þ�LHdata�

^

RInhB ¼ ½InhBðt30Þ�InhBdata�

RFSH,40 ¼ ½FSHðt40Þ�FSHdata,older�

and

RInhB,40 ¼ ½InhBðt40Þ�InhBdata,older�

Here LHdata,FSHdata, etc., are the data for younger women, and
FSHdata,older and InhBdata,older are the data for older women from
Welt et al. (1999). The residuals include model output of all six
hormones at age 30 (LHðt30Þ,FSHðt30Þ, etc.) compared to data for
younger women, and model output for FSH and InhB at age 40
(FSHðt40Þ and InhBðt40Þ) compared to data for older women. FSH
and InhB for older women are included because of the decline of
follicular phase InhB and subsequent rise in FSH that is seen
between age 30 and 40 (Welt et al., 1999).

Appendix B. Parameters and initial conditions

See Tables B1–B5.

Table B1
Optimized parameters for Eq. (S1)–(S2) and (A5). This parameter set was obtained by

minimizing the sum of square residuals of log(PrimorþPrimar) against logðHansendataÞ

(Hansen et al., 2008), and AMH¼a1 Primar against AMHdata (Hagen et al., 2010;

Hudson et al., 1990; Lee et al., 1996; Sowers et al., 2008; Tehrani et al., 2010; van Beek

et al., 2007; van Disseldorp et al., 2008) (see Appendix A).

Eqs. (S1)–(S2) Eq. (A5)

cAMH¼0.22670.187 mL/ng a1¼0.043770.00463 ng/

(mL follicle)

cprm¼1.31E�0572.49E�06 follicle�1 a2¼0n

rsurv¼0.014n

r1¼0.0010270.000178 day�1

r2¼0.00694n day�1 a3¼0n

The n’s indicate parameter values that were fixed to avoid correlations among

parameters during optimization. For r2, a scaled version and br 2, was fixed (see

Section 4.1). See Fig. 3 for the simulation profiles plotted against data.
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Table B4
Parameters for Eqs. (A1)–(A4). These parameters were obtained by using biologi-

cally appropriate magnitudes for the follicular state variables, and estimating the

values for the coefficients that would achieve good fits to the data from Welt et al.

(1999) for younger women. These parameter values were fixed during optimiza-

tion to avoid correlations among parameters.

Eqs. (A1)–(A4)

e0¼30 pg/mL

e1¼0.04 pg/(mL mm3)

e2¼0.065 pg/(mL mm3)

e3¼0.1 pg/(mL mm3)

p0¼0 ng/(mL mm3)

p1¼0.0085 ng/(mL mm3)

p2¼0 ng/(mL mm3)

h0¼0

h1¼0.0035 IU/(mL mm3)

h2¼0.0021 IU/(mL mm3)

h3¼0.0021 IU/(mL mm3)

j0¼15 pg/mL

j1¼20.2 pg/(mL mm3)

j2¼0.0138 pg/(mL mm3)

Table B5
Initial conditions used when solving the model at ages 30 and 40. Initial

conditions for Primor and Primar were obtained by solving Eqs. (S1)–(S2) and

(A5) from age 20 up to the required age. Initial conditions for the remaining stages

were obtained for a specific age by fixing Primor and Primar, and allowing the

solution to approach the stable attractor. We consider a less than 1% change in

initial condition from one cycle to the next as a sign that the stable attractor has

been reached. Centering the LH peak at day 14, the value of a stage at day 1 is

taken to be the initial condition for that stage.

State variable Age 20 Age 30 Age 40

Primor 265,000 108,000 19,000

Primar 100 72.5 27.6

PrAnF 1.15 0.712 0.237

SmAnF 3.98 3.21 1.46

ReF 40.4 37.9 33.2

GrF 53.1 52.9 55.9

DomF 23.3 23.0 24.3

Ov 16.0 15.6 16.3

Lut1 91.3 88.9 89.9

Lut2 320 313 312

Lut3 438 429 426

Lut4 362 355 352

RPLH 78.5 79.5 80.0

LH 9.05 9.05 9.05

RPFSH 12.0 12.7 14.4

FSH 11.0 11.6 13.1

Table B2
Optimized parameters for Eqs. (S3)–(S12). This list along with the parameters

in Tables B3 and B4 were obtained by minimizing the sum of square residuals of

LH, FSH, E2, P4, InhA, and InhB against data from Welt et al. (1999) (see

Appendix A).

Eqs. (S3)–(S12)

vol2¼0.500n mm3

KmF1¼9.8270.306 IU/L

KmF2¼10.4n IU/L

KmF3¼5.0870.355 IU/L

KiAMH¼20.771.37 ng/mL

a¼ 29:172

b¼ 2:0670:125

g¼ 2:9570:137

d¼ 0:99970:0245

o¼ 0:36370:0142

r3¼0.75970.0657 day�1

r4¼2.2370.0967 L/(day IU)

r5¼1.2170.0487 day�1

c1¼0.91870.0188 day�1

c2 ¼ 0:057570:000499 ðL=IUÞd=day

c3¼0.024170.00172 L/(day IU)

c4¼0.030770.00299 L/(day IU)

c5 ¼ 0:198n
ðL=IUÞo=day

c6¼0.0051975.28E�05 L/(day IU)

c7¼0.68670.0489 day�1

k1¼0.41670.0258 day�1

k2¼0.40570.0181 day�1

k3¼0.55170.0218 day�1

k4¼0.90370.0351 day�1

The n’s indicate parameter values that were fixed to avoid correlations among

parameters during optimization.

Table B3
Parameters for Eqs. (S13)–(S16).

Eq. (S13)–(S16)

V0,LH ¼ 343716:4 IU=day

V1,LH ¼ 8110n IU=day

KmLH ¼ 24774:75 pg=mL

KiLHP ¼ 155717:1 ng=mL

kLH ¼ 1:0170:0709 day�1

clLH ¼ 14:0n day�1

cLHP ¼ 1:1070:101 mL=ng

cLHE ¼ 0:0039877:59E�05 mL=pg

dE ¼ 0:18770:0457 day

dP ¼ 2:0070:249 day

VFSH ¼ 616711:9 IU=day

KiFSH,InhA ¼ 2:58n IU=mL

KiFSH,InhB ¼ 120n pg=mL

kFSH ¼ 1:0470:103 day�1

clFSH ¼ 8:21n day�1

cFSH,P ¼ 13078:61 mL=ng

cFSH,E ¼ 0:0052570:00058 mL2=pg2

dInhA ¼ 1:3870:0852 day

dInhB ¼ 0n day

v¼2.5n L

The n’s indicate parameter values that were fixed during optimization. Some of

these were taken from biological sources, others were fixed at nominal values to

avoid correlations among parameters during optimization (see Section 3.6). The

parameters clLH and clFSH were taken from biological sources of Kohler et al. (1968)

and Cobel et al. (1969). The parameter dInhB was taken to be zero as a result of

separate analysis of the FSH equations using time-dependent input functions for

the ovarian hormones.
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