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a b s t r a c t

This study presents a 13-dimensional system of delayed differential equations which predicts serum

concentrations of five hormones important for regulation of the menstrual cycle. Parameters for the

system are fit to two different data sets for normally cycling women. For these best fit parameter sets,

model simulations agree well with the two different data sets but one model also has an abnormal

stable periodic solution, which may represent polycystic ovarian syndrome. This abnormal cycle occurs

for the model in which the normal cycle has estradiol levels at the high end of the normal range.

Differences in model behavior are explained by studying hysteresis curves in bifurcation diagrams with

respect to sensitive model parameters. For instance, one sensitive parameter is indicative of the

estradiol concentration that promotes pituitary synthesis of a large amount of luteinizing hormone,

which is required for ovulation. Also, it is observed that models with greater early follicular growth rates

may have a greater risk of cycling abnormally.

& 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Regulation of the human menstrual cycle depends on dual
control via hormones synthesized by the hypothalamus and the
pituitary glands and by the ovaries. A mechanistic, mathematical
model for normally cycling women must capture this complicated
interaction. Follicle stimulating hormone (FSH) and luteinizing
hormone (LH) are secreted by the pituitary gland and control
follicular development, ovulation and overall ovarian activity, see
Hotchkiss and Knobil (1994), Yen (1999) and Zeleznik and Benyo
(1994). The ovaries produce estradiol ðE2Þ, progesterone ðP4Þ and
inhibin (Ih) which influence the synthesis and release of FSH

and LH.
A mathematical model for hormonal control of the menstrual

cycle may be used to investigate cycle abnormalities such as
polycystic ovarian syndrome (PCOS) (Yen, 1999a) and to simulate
the effects of external hormone therapies on abnormally cycling
women. Also, there is concern that environmental substances
which have estrogenic activity may disrupt the normal cycle
(Daston et al., 1997; McLachlan and Korach, 1995) and a

mathematical model may be helpful in testing this hypothesis.
Finally, oral contraception prevents the LH surge which is
responsible for ovulation. Model simulations may be used to
determine hormonal levels which will suppress this surge.

Various models for cycle regulation have been developed over
the last 40 years, including Bogumil et al. (1972a), Bogumil et al.
(1972b), McIntosh and McIntosh (1980), Plouffe and Luxenberg
(1992) and Schwartz (1970). Recently, a 13-dimensional system of
ordinary differential equations with discrete delays (Selgrade and
Schlosser, 1999; Schlosser and Selgrade, 2000; Harris-Clark et al.,
2003) describing the concentrations of these five hormones has
predicted blood levels of these hormones which agree with data
in the literature for normally cycling women (McLachlan et al.,
1990). Reinecke and Deuflhard (2007), use a system of 43 delay
differential equations to extend the Harris-Clark et al. model to
include additional biological factors. Their model has a stochastic
component for the gonadotropin releasing hormone (GnRH) pulse
generator and detailed equations for LH and FSH receptor binding
and synthesis of hormones in the ovary.

Harris-Clark et al. (2003) estimated the parameters in their
system using the data in McLachlan et al. (1990), for 33 normally
cycling women. These data are daily averages of the five hormones
for 31 consecutive days and the averages are computed by
centering data from each individual woman about the day of her
LH surge. The E2 data in McLachlan et al. (1990) are given by the
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open circles in Fig. 1. Model parameters were estimated from the
McLachlan data and model simulations (Harris-Clark et al., 2003)
closely approximated these data (see Fig. 2(a) for the graph of E2).
We refer to the model with this parameter set as the McLachlan
model. Welt et al. (1999), presented data for these five hormones
(inhibin A replacing inhibin) from 23 normally cycling women for
a 28 day period and these E2 data are depicted by closed circles in
Fig. 1. Clearly the mid-cycle peak in E2 for the Welt data is lower
than that for the McLachlan data by approximately 20% and the
luteal peak is also lower. Pasteur (2008) fit the same system to the
Welt data, which are a bit noisier than the McLachlan data and
differ in units for some hormones. Model simulations (referred
to as the Welt model) are good fits to the Welt data, e.g., see the
graph of E2 in Fig. 2(b).

The dynamical behavior of the McLachlan model has some
differences from the Welt model. Most importantly, the McLachlan
model has two stable periodic solutions (Harris-Clark et al.,
2003)—one fits the McLachlan data for normally cycling women
and the other is anovulatory (see the dashed curves in Fig. 4) and
may represent PCOS because of a low P4 concentration and an

acyclic (fluctuates very little during the month) E2 concentration
(Yen, 1999a). By contrast, the Welt model has only one stable
periodic solution and it fits the Welt data for normally cycling
women. Such a discrepancy in dynamical behavior could suggest a
lack of consistency in this model for cycle regulation. Here we
show that this is not the case by analyzing bifurcation diagrams
with respect to sensitive parameters and by displaying hysteresis
loops which explain model differences. Hence, both models have
similar dynamical structures but exhibit different asymptotic
behaviors due to parameter sensitivity which manifests itself
when slightly different data sets are used to estimate parameters.
This observation indicates the importance of understanding
broader model behavior beyond the specific simulations corre-
sponding to one parameter set if a modeler wishes to use the
model to make biological conclusions. For the menstrual cycle
model studied here, we also notice that the higher E2 profile
corresponds to the model displaying an abnormal cycle. Is this
biologically significant, i.e., does a woman with E2 levels at the
high end of the normal range have a greater chance of cycling
abnormally? We return to this question in Section 5.

In this paper, Section 2 discusses model background and
development. In Section 3, we compare simulation results of the
McLachlan model and the Welt model. Sensitivity analysis, which
is done in Section 4, orders the most sensitive parameters and
shows they are the same for both models. Sections 5 and 6 display
and compare bifurcation diagrams and investigate structural
consistency. Section 7 summarizes the results.

2. Background and model structure

The menstrual cycle for normal adult females consists of two
phases, the follicular phase and the luteal phase, separated by
ovulation (Ojeda, 1992). The pituitary, influenced by signals from
the hypothalamus, synthesizes and releases the gonadotropin
hormones, FSH and LH. These hormones have a pulsatile secretion
pattern. However, we assume that the ovary responds to average
blood levels of FSH and LH (Odell, 1979), so we track their average
concentrations in the blood. In response to the gonadotropin
hormones, the ovaries produce E2, P4and Ih. In turn, the ovarian
hormones affect the pituitary’s synthesis and release of FSH and
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Fig. 1. Estradiol ðE2Þ data from McLachlan et al. (1990) (31 open circles) and from

Welt et al. (1999) (28 closed circles). The Welt data are translated to the right by 2

days so the time of the mid-cycle E2 peak agrees with that of the McLachlan data.
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Fig. 2. (a) E2 data from McLachlan et al. (1990) and McLachlan model simulation (solid curve); (b) E2 data from Welt et al. (1999) and Welt model simulation (solid curve).
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LH during the various stages of the cycle. Because of this dual
control, the modeling procedure is divided into three steps.

In the first step, the synthesis, release and clearance of the
gonadotropin hormones are described by two two-dimensional
systems of differential equations (S1)–(S4), which contain specific
input functions of time t for the ovarian hormones E2ðtÞ; P4ðtÞ

and IhðtÞ constructed using data from the biological literature
(McLachlan et al., 1990; Welt et al., 1999). The state variables are
the amount of gonadotropin hormone in the pituitary’s releasable
pool, RP, and the serum concentration of that hormone. As
explained in Schlosser and Selgrade (2000), the model assumes
that E2 inhibits hormone release but, after E2 reaches a threshold
level, E2 stimulates LH synthesis. The synthesis terms in (S1) and
(S3) contain time lags in the ovarian hormones to account for
delayed effects on the synthesis rates of the gonadotropin
hormones. The only known parameters are clearance rates for
LH and FSH and blood volume v. To estimate the nine unknown
parameters of the LH system (S1) and (S2) and the six unknown
parameters of the FSH system (S3) and (S4), Harris-Clark et al.
(2003) and Pasteur (2008) employed the Nelder–Mead method in
MATLAB to minimize least squares cost functions which used the
LH data for (S1) and (S2) and the FSH data for (S3) and (S4).
Parameter estimates from previous work (Schlosser and Selgrade,
2000) and some manual parameter adjustments were needed to
get reasonable starting parameter sets because the Nelder–Mead
method is a local minimizer.

Secondly, as derived in Selgrade and Schlosser (1999) there is a
nine-dimensional system of differential equations (S5)–(S13) for
nine stages of the monthly development of the ovary. These stages
represent the active capacities of follicular and luteal tissue
to produce hormones under the influence of the gonadotropin
hormones. The follicular phase is divided into three stages
referred to as the menstrual follicular stage MsF, the secondary
follicular stage SeF and the primary follicular stage PrF. Ovulation
is represented by two scars, Sc1 and Sc2, and the luteal phase
consists of four stages, Luti for i ¼ 1; . . . ;4. The gonadotropins
promote the growth of each stage and the transition from one
stage to the next as indicated in Fig. 3. Clearance from the blood
of the ovarian hormones is very rapid compared with clearance
of the pituitary hormones. Hence, in agreement with Bogumil
et al. (1972a), we assume that serum levels of E2, P4and Ih are
at quasi-steady state (Keener and Sneyd, 2009) and take these
concentrations to be linear combinations of appropriate ovarian
stages, see (A1)–(A3). Into (S5)–(S13), we inserted explicit
functions of t constructed from the data for LH and FSH.
Then parameter identification was done in either of two ways.

Harris-Clark et al. (2003) estimated the 19 parameters in
(S5)–(S13) and (A1) using a least squares cost function with the
E2 data and, then, estimated the seven parameters in (A2) and
(A3) using cost functions with the P4 and the Ih data. On the other
hand, Pasteur (2008) estimated all 26 parameters using one
weighted cost function, which scaled the ovarian hormones to the
same order of magnitude.

The final step merges the pituitary and ovarian components
into a 13-dimensional system of delayed, ordinary differential
equations (S1)–(S13) with auxiliary equations (A1)–(A3). The state
variables for (S1)–(S13) are RPLH , LH, RPFSH , FSH and the nine
ovarian variables indicated by the compartments in Fig. 3. Starting
with the parameter values obtained in the preceding two steps,
additional parameter refinements were performed to improve
fits to data. Thus, 44 parameters for the McLachlan model
(Harris-Clark et al., 2003) and for the Welt model (Pasteur,
2008) were identified.

System (S)

d

dt
RPLH ¼

V0;LH þ
V1;LHE2ðt � dEÞ

8

Km8
LH þ E2ðt � dEÞ

8

1þ P4ðt � dPÞ=KiLH;P
�

kLH½1þ cLH;PP4�RPLH

1þ cLH;EE2
ðS1Þ

d

dt
LH ¼

1

v

kLH½1þ cLH;PP4�RPLH

1þ cLH;EE2
� aLH LH ðS2Þ

d

dt
RPFSH ¼

VFSH

1þ Ihðt � dIhÞ=KiFSH;Ih
�

kFSH½1þ cFSH;PP4�RPFSH

1þ cFSH;EE2
2

ðS3Þ

d

dt
FSH ¼

1

v

kFSH½1þ cFSH;PP4�RPFSH

1þ cFSH;EE2
2

� aFSH FSH ðS4Þ

d

dt
MsF ¼ bFSH þ ½c1 FSH � c2LHa

�MsF ðS5Þ

d

dt
SeF ¼ c2 LHa MsF þ ½c3 LHb

� c4 LH� SeF ðS6Þ

d

dt
PrF ¼ c4 LH SeF � c5 LHg PrF ðS7Þ

d

dt
Sc1 ¼ c5 LHg PrF � d1 Sc1 ðS8Þ

d

dt
Sc2 ¼ d1 Sc1 � d2 Sc2 ðS9Þ

d

dt
Lut1 ¼ d2 Sc2 � k1 Lut1 ðS10Þ

d

dt
Lut2 ¼ k1 Lut1 � k2 Lut2 ðS11Þ

d

dt
Lut3 ¼ k2 Lut2 � k3 Lut3 ðS12Þ

d

dt
Lut4 ¼ k3 Lut3 � k4 Lut4 ðS13Þ

The following three auxiliary equations (A) give serum levels of E2,
P4 and Ih, as functions of the appropriate state variables, which
appear in system (S):

Auxiliary equations (A)

E2 ¼ e0 þ e1SeF þ e2PrF þ e3Lut4 ðA1Þ

P4 ¼ p0 þ p1Lut3 þ p2Lut4 ðA2Þ

Ih ¼ h0 þ h1PrF þ h2Lut3 þ h3Lut4 ðA3Þ

Fig. 3. Diagram of the ovarian stages where compartments represent follicular or

luteal tissue. Arrows indicate transition from one stage to the next stage or growth

within a stage.
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Because of the form of (A), a function which represents an external
ovarian hormone may be added to the right side of (A). Hence,
numerical simulations may be used to test the effects of
exogenous ovarian hormones on model behavior.

3. Results for McLachlan model and Welt model

Simulations of the McLachlan model for system (S) are
discussed in detail in Harris-Clark et al. (2003). There are two
locally asymptotically stable periodic solutions. One solution has a
period of 29.5 days and approximates the McLachlan data for
normally cycling women (see the solid curves in Fig. 4 for E2 and
LH) and the other solution has period 24 days and represents an
abnormal cycle (see the dashed curves in Fig. 4). Because there is
no LH surge, the abnormal cycle is anovulatory and its acyclic E2

profile suggests the possibility of PCOS (Yen, 1999a). Although the
domain of attraction of the normal cycle appears to be much
larger than that of the abnormal cycle, Harris-Clark et al. (2003)
showed that a carefully timed transient E2 perturbation applied to
the normal cycle could result in the system cycling abnormally.
Conversely, the transient addition of external P4 was shown
to perturb an abnormal cycle back into the normal range
(Harris-Clark et al., 2003).

Simulations of the Welt model (Pasteur, 2008) revealed only
one stable periodic solution, see Fig. 5. It has a period of 28 days
and approximates the Welt data set of 28 points. Observe that the
LH units for the Welt data are different from those of the
McLachlan data. After transient perturbations, the Welt model

always returns to the unique stable cycle but possibly out of
phase.

The only difference between the McLachlan model and the
Welt model is in the parameters which fit the two data sets.
However, because of a different number of stable periodic
solutions, the McLachlan model and the Welt model predict
different behavior for our menstrual cycle regulation model,
(S) with (A). Depending on initial hormone concentrations, a
woman described by the McLachlan model may cycle normally
or abnormally. On the other hand, a woman described by the
Welt model cycles normally regardless of initial conditions. It
is reasonable to suggest that changes in parameters for the
Welt model may yield a parameter set still different from the
McLachlan model but having two stable cycles. In fact, we show
that varying just the parameter KmLH in the LH synthesis term in
(S1) has this effect. One reason for choosing KmLH for this analysis
is that model behavior is sensitive to variations in KmLH .

4. Sensitivity analysis

Normalized sensitivity coefficients measure the effect of small
variations in parameters on system outputs. Roughly speaking,
this coefficient is a partial derivative of a function of the state
variables with respect to a parameter, normalized so that
comparisons may be made among variables and parameters.
Specifically, the coefficient is a discrete change in the system
output relative to the output value divided by the change in the
parameter relative to the parameter value. For instance, if the
parameter p is increased by 1% and the system output is denoted
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Fig. 4. E2 and LH simulations of the McLachlan model. The solid curves depict a normal cycle and the dashed curves, an abnormal cycle.
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as a function of p by SOðpÞ then the normalized sensitivity
coefficient is computed according to the formula

DSO

SO

p

Dp
¼

SOð1:01pÞ � SOðpÞ

SOðpÞ

p

0:01p
¼ 100

SOð1:01pÞ � SOðpÞ

SOðpÞ
ð4:1Þ

During the menstrual cycle, a significant follicular phase rise in
E2 stimulates the secretion of LH and causes the LH surge, which is
necessary for ovulation and normal ovarian function. Also, our
primary point of comparison between the two data sets is the
difference in E2 mid-cycle peaks. Hence, for our sensitivity analysis,
the system output we measure is the height of the E2 mid-cycle
peak along the normal cycle for both the McLachlan model and the
Welt model. We use formula (4.1) to compute sensitivity coeffi-
cients for the 44 parameters. The six most sensitive with respect to
the E2 mid-cycle peak are the same for both models. Table 1 lists
parameter values and the sensitivity coefficients for these six most
sensitive parameters ordered by the absolute value of the entry in
the last column, i.e., the sensitivity coefficient for the Welt model. A
negative coefficient means that the E2 mid-cycle peak decreases as
the parameter increases. Notice that the McLachlan model is more
sensitive to parameter variation than the Welt model. Although the
most sensitive parameter is the LH exponent a in (S5) and (S6), we
focus on the second most sensitive parameter KmLH because of its
physiological significance.

5. Comparison of bifurcation diagrams

The rate of LH synthesis increases with E2 serum concentration
according to the rational function (Hill function) in the numerator

of the first term of (S1) because the denominator is almost
constant during the follicular phase. This Hill function is a sigmoid
shaped curve which determines a sharp transition from a low
synthesis rate given by V0;LH to a maximal rate (saturation) given
by V1;LH. The parameter KmLH is the value of E2 where the Hill
function reaches half-saturation and where the curve is steep
(slope proportional to V1;LH). When E2 reaches the value of KmLH ,
the pituitary is synthesizing substantial amounts of LH. In fact,
for the McLachlan model LH synthesis is considerable even
for E2 levels less than KmLH because the parameter V1;LH ¼

91 000mg=day is large (see Schlosser and Selgrade, 2000, for
details). Also, Table 1 indicates that the E2 peak is sensitive to
variation in KmLH . Hence, we investigate how model behavior is
affected by changes in KmLH , i.e., we look for bifurcations with
respect to the parameter KmLH.

Figs. 6, 8 and 10 illustrate the bifurcation curves for system (S)
where the vertical axis denotes the difference between the
maximum and the minimum of the first state variable, RPLH ,
along a periodic solution to (S) and, hence, this difference is a
measure of the amplitude of the periodic solution. At an
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Fig. 5. E2 and LH simulations of the Welt model.

Table 1
E2 peak normalized sensitivity coeffs. for six most sensitive parameters.

Par. Definition McLachlan value coeff. Welt value coeff.

a LH exponent 0.7736 �6.72 0.79 �1.78

KmLH Half-saturation 360 pg/mL 1.19 180 pg/mL 0.90

c2 MsF transfer 0:048 ðL=mgÞa=day �2.2 0:09 ðL=IUÞa=day �0.83

VFSH FSH growth 5700mg=day 2.25 375 IU/day 0.74

c1 MsF growth 0:0058 L=mg=day 2.34 0.09 L/IU/day 0.74

V0;LH LH growth 1263:4mg=day �1.62 500 IU/day �0.65
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equilibrium this difference is zero, so the horizontal axis denotes
an equilibrium. Because system (S) consists of delay equations
and there are ranges of parameter values where there exist three
periodic solutions of widely varying amplitudes, tracking all of the
solutions is difficult, particularly for unstable solutions. Hence, we
developed and programmed in MATLAB a tedious method of
careful shooting to obtain the positions of stable and unstable
periodic solutions. At any fixed value of KmLH for which there are
two stable periodic solutions, it was possible to obtain a solution
attracted toward either of these stable cycles by varying only the
initial condition corresponding to the first ovarian compartment,
MsF. By repeated simulations, we estimated the branch value
corresponding to this initial condition for which slight perturba-
tions to the initial condition lead to observing the two distinct
stable periodic solutions. When using an initial condition that was
very close to the initial condition that produced this branch value,
we observed a transient approximation of the unstable periodic
solution, potentially lasting for many cycles, before eventual
visible attraction to one of the stable solutions occurred. This
enabled estimation of the period, amplitude and profile associated
with the unstable periodic solution at a given value of KmLH , as
in Fig. 7. Because they are attracting, the stable cycles were easier
to track. Repeating the same process with other values of KmLH

resulted in the bifurcation curves of Figs. 6, 8 and 10.
Fig. 6 gives the bifurcation diagram for the Welt model. KmLH ¼

180 pg=mL is the parameter value in the parameter set which
fits the Welt data best, so the normal cycle is denoted by the � in
the figure. For small values of KmLH , the only stable solution is an
equilibrium. At KmLH � 68:66, a Hopf bifurcation (HB in Fig. 6)
occurs which results in a stable periodic solution (solid curve) and
an unstable equilibrium (dotted horizontal axis). This stable cycle
continues to the large amplitude (normal) cycle as KmLH increases
to 180. Then when KmLH � 246:1, a saddle-node (SN) bifurcation
(not labeled) occurs resulting in a small amplitude stable cycle
(solid curve) and an unstable cycle (dotted curve) as indicated in
Fig. 6. The small amplitude cycle quickly disappears via another
Hopf bifurcation at KmLH � 256:9. The unstable cycle coalesces
with the continuation of the Welt model normal cycle in a saddle-
node bifurcation at KmLH � 308:2 and both disappear (see SN in
Fig. 6). For KmLH4308:2, only a stable equilibrium remains. The
sigmoid shaped curve on the right in Fig. 6 which contains stable
and unstable cycles is referred to as a hysteresis curve or loop.
For KmLH between 246.1 and 256.9, there are two stable cycles and

an unstable cycle, which are depicted in Fig. 7 for KmLH ¼ 250.
Notice the similarity between the two stable cycles in Fig. 7 and
the E2 profiles of the two stable cycles for the McLachlan model
(Fig. 4). In particular, E2 levels of the large amplitude cycles in
both graphs reach 300 pg/mL at mid-cycle.

Fig. 8, the bifurcation curve for the McLachlan model, depicts a
closed loop of stable and unstable cycles because of two saddle-
nodes at KmLH � 270 and 770. The upper half of the loop
represents stable cycles and the lower half represents unstable
cycles. Also there is a Hopf bifurcation at KmLH � 265 resulting in
a stable cycle of small amplitude which persists until at least
KmLH � 1500, where it disappears in another Hopf bifurcation
(not shown). Three vertical phase lines are drawn in Fig. 8 to
indicate the directions of solution curves toward attracting
solutions or away from unstable solutions. The line at KmLH ¼

150 depicts solutions that approach the stable equilibrium
represented by the point on the horizontal axis. Because SN
denotes a degenerate periodic solution, the line through SN
contains solutions that approach SN and solutions that leave
SN and approach the small amplitude stable cycle. The line at
KmLH ¼ 400 depicts solutions that approach the two stable cycles
and solutions that leave the unstable cycle and the unstable
equilibrium. KmLH ¼ 360 corresponds to the parameter set that
fits best the McLachlan data and is indicated by a � in Fig. 8.
This parameter value lies between the saddle-nodes and between
the Hopf bifurcations. Hence, a woman cycling according to the
McLachlan data (i.e., the McLachlan model) has the possibility of
cycling normally or abnormally depending on initial hormone
concentrations. In fact, the possibility of dual cycles exists for any
KmLH value between 270 and 770. The smaller amplitude stable
cycle is anovulatory because the amount of RPLH is too low to
permit a LH surge. If KmLH is outside this range, i.e., far enough to
the left or to the right in the diagram, then the woman will have
only an anovulatory cycle.

By contrast, for the Welt model, the best fit parameter value
KmLH ¼ 180 lies to the left of the hysteresis curve in Fig. 6 and so a
woman cycling according to the Welt model will only cycle
normally. From Fig. 2, it is clear that E2 levels for the Welt model
are lower than those for the McLachlan model and reach only
240 pg/mL at mid-cycle compared to 300 pg/mL. However,
as KmLH increases from 180, the E2 profile for the Welt model
changes and becomes quite similar to the E2 profile of the
McLachlan model (Fig. 9). As predicted by Table 1, as KmLH

increases, the Welt model mid-cycle E2 increases and reaches E2 �

300 pg=mL when KmLH ¼ 250. But at this value of KmLH , the Welt
model also admits the abnormal cycle shown in Figs. 6 and 7.
Hence, a woman cycling normally with a high E2 profile (either
graph in Fig. 9) has the possibility of being perturbed into an
abnormal, anovulatory cycle. As far as we know, this hypothesis
has not been tested experimentally. In this regard, a clinical
approach might be to compare E2 levels of normally cycling
women with those of PCOS patients who cycle normally after
successful therapy to see if the post-PCOS E2 profiles peaks are
higher than those of normal women.

6. Bifurcation diagrams for different follicle growth rates

The bifurcation diagrams, Figs. 6 and 8, appear quite different.
From Table 1, we see that the E2 peak is sensitive to the ovarian
growth parameter c2, which transfers mass from the first follicular
stage MsF to the second follicular stage SeF (S5) and (S6). For the
McLachlan model, the normal cycle occurs when c2 ¼ 0:048. The
bifurcation diagram (Fig. 8) is drawn for that c2 value. If analogous
bifurcation diagrams are drawn for smaller c2 values, the closed
loop in Fig. 8 develops a gap and bifurcation diagrams become
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somewhat similar to the Welt diagram Fig. 6. Specifically, as c2

decreases, the closed loop moves down toward the curve of
abnormal cycles, touches this curve in what appears to be a
transcritical bifurcation in the parameter KmLH and then breaks to
form two new saddle-node bifurcations (see Fig. 10). Fig. 10(a)
depicts the bifurcation diagram for the McLachlan model when
c2 ¼ 0:047. An interval of KmLH values has formed between the
two SN’s for which there are no abnormal cycles. As c2 decreases
to 0.045, this interval of KmLH values increases (Fig. 10(b))
and, hence, the likelihood of abnormal cycling has diminished.
However, the KmLH value of 360 pg/mL, which corresponds to the
McLachlan data, still lies in the KmLH parameter range where there
are two stable cycles (Fig. 10). Numerical simulations of (S) with
KmLH ¼ 360 indicate that decreasing c2 permits slightly more
growth of the MsF follicular stage before mass transfer occurs to
the next stage SeF. A greater MsF mass compensates for a smaller
c2 value in (S6) and results in more SeF, which is somewhat
unexpected. In turn, more SeF mass results in slightly more
follicular E2 via (A1) and a slightly earlier and higher LH surge. In
this model, early cycle follicular development appears sensitive to
the interplay between ovarian state variables and parameters.
Successful modeling of early follicular development may require
additional ovarian stages which capture the transition in the
ovaries from the late luteal phase of one cycle to the early
follicular phase of the next cycle. To investigate this transition in
the future we will use a 12 stage ovarian model (Pasteur, 2008),
which includes two new stages representing pre-antral and early
antral follicles (Odell, 1979; Ojeda, 1992).

7. Summary and conclusion

This study compares the dynamical behavior of two models of
cycle regulation given by the same system of differential
equations (S) but based on two different data sets (McLachlan
et al., 1990; Welt et al., 1999) for the same five hormones.
The McLachlan model has two stable periodic solutions, a normal
cycle and an abnormal cycle possibly representing PCOS, and the
Welt model has only one stable periodic solution. We show that
this apparent lack of consistency may be explained by analyzing
bifurcation diagrams with respect to the half-saturation para-
meter KmLH in the LH synthesis term (S1) and a follicular mass
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transfer coefficient c2 (S5) and (S6). KmLH is a measure of the level
of estradiol for which the pituitary synthesizes a large amount
of LH and, hence, for the LH surge and ovulation to occur.
The McLachlan KmLH value lies within a bifurcation loop (Fig. 8),
which results in the existence of the two stable cycles, but the
parameter value for the Welt model lies outside the hysteresis
loop in the corresponding Welt bifurcation diagram (Fig. 6). If
the Welt KmLH parameter is increased to a position within the
hysteresis loop not only does the Welt model have an abnormal
cycle but the new Welt E2 profile is very similar to that of the
McLachlan model (see Fig. 9), although the KmLH values are
different. This similarity in conjunction with the presence of an
abnormal cycle may indicate that a woman with E2 levels at the
upper end of the normal range has a greater risk of cycling
abnormally. This hypothesis should be investigated clinically.
Generally, understanding variations in model behavior due to
changes in sensitive parameters may help a modeler make
biological conclusions from model behavior and may suggest
directions for future biological investigation.

The abnormal cycle exhibits an acyclic E2 profile (Fig. 4) and,
hence, high E2 levels during the early follicular phase of the cycle.
In vivo, this E2 is secreted by an excess of early antral follicles,
which is a characteristic of PCOS (Jonard et al., 2003; Pigny et al.,
2006; Chen et al., 2008). Understanding early follicular develop-
ment will require refinements of the present 13-dimensional
model which include the late luteal to early follicular transition
and will require the consideration of other factors such as
androgen levels and insulin resistance.
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