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a b s t r a c t

A system of 13 ordinary differential equations with 42 parameters is presented to model hormonal reg-
ulation of the menstrual cycle. For an excellent fit to clinical data, the model requires a 36 h time delay for
the effect of inhibin on the synthesis of follicle stimulating hormone. Biological and mathematical reasons
for this delay are discussed. Bifurcations with respect to changes in three important parameters are
examined. One parameter represents the level of estradiol adequate for significant synthesis of luteiniz-
ing hormone. Bifurcation diagrams with respect to this parameter reveal an interval of parameter values
for which a unique stable periodic solution exists and this solution represents a menstrual cycle during
which ovulation occurs. The second parameter measures mass transfer between the first two stages of
ovarian development and is indicative of healthy follicular growth. The third parameter is the time delay.
Changes in the second parameter and the time delay affect the size of the uniqueness interval defined
with respect to the first parameter. Saddle-node, transcritical and degenerate Hopf bifurcations are
studied.

� 2011 Elsevier Inc. All rights reserved.

1. Introduction

Systems of ordinary and delayed differential equations have
been used to model hormonal regulation of the human menstrual
cycle, e.g., see Bogumil et al. [4,5], McIntosh and McIntosh [20],
Plouffe and Luxenberg [25], Selgrade and Schlosser [36], Schlosser
and Selgrade [32], Harris-Clark et al. [14], Reinecke and Deuflhard
[27], and Pasteur [24]. Dual control of the menstrual cycle depends
on hormones produced by the hypothalamus and the pituitary
glands in the brain and by the ovaries. The pituitary prompted by
signals from the hypothalamus secretes follicle stimulating hor-
mone (FSH) and luteinizing hormone (LH) which control ovarian
development and ovulation, see [15,41,42]. The ovaries produce
estradiol (E2), progesterone (P4) and inhibin (Inh) which affect
the synthesis and release of FSH and LH, see [16,19,38]. Harris-
Clark et al. [14], Pasteur [24], Schlosser and Selgrade [32], and Sel-
grade and Schlosser [36] have derived a 13-dimensional system of
delayed differential equations which captures these interacting
mechanisms. Model parameters were identified using two differ-
ent clinical data sets for normally cycling women [21,39]. Model
simulations with parameters from the McLachlan data [21]

revealed two stable periodic solutions [14] – one fitting the
McLachlan data for normally cycling women and the other being
non-ovulatory because of no LH surge. The non-ovulatory cycle
has similarities to an abnormal cycle of a woman with polycystic
ovarian syndrome (PCOS) [40], the leading cause of female infertil-
ity. However, model simulations corresponding to the Welt param-
eters produced only one stable periodic solution and it fits the Welt
data for normally cycling women. Selgrade et al. [35] explained
this apparent inconsistency by showing that a change in only one
sensitive parameter of the Welt system would result in the Welt
model exhibiting bistability like the McLachlan model.

Abnormal cycling and non-ovulatory cycling have serious
health and reproductive consequences. In fact, between 6% and
9% of adult women exhibit some symptoms of PCOS, see Azziz
et al. [2], and Alvarez-Blasco et al. [1]. Since cycle irregularities
are usually associated with abnormal hormone levels, mathemati-
cal models of hormonal regulation may provide information about
parameter variations which result in abnormal cycling and may
provide insights about possible hormonal therapies. In an effort
to understand what parameter ranges result in normal and abnor-
mal cycling, Selgrade [34] set the time-delays to zero in the Welt
model and used the software XPPAUT [9] to study bifurcation dia-
grams with respect to two of the most sensitive parameters. Bifur-
cation diagrams for the resulting autonomous system could be
drawn with the features of AUTO [7] in XPPAUT. This autonomous
model gives an acceptable fit to the 28 day Welt data set [39]
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except some hormone peaks are lower than the data and the period
for the normal cycle is only about 26 days, see Fig. 1.

Based on model sensitivity analysis [24,35], the two key param-
eters for study in [34] were KmLH and c2. KmLH is the half-saturation
constant which represents the level of E2 sufficient for significant
LH synthesis and the LH surge. c2 indicates the ovarian mass trans-
fer rate between the first two stages of ovarian development. The
bifurcation diagram with respect to KmLH reveals an interval of
KmLH parameter values for which a unique stable periodic solution
exists and this solution represents a menstrual cycle with an LH
surge adequate for ovulation. If KmLH lies outside this cycle unique-
ness interval then either no LH surge occurs or there are two stable
cycles – one is ovulatory and the other may be non-ovulatory be-
cause of an insufficient LH surge. Changes in c2 affect the size of
this interval because of the positions of Hopf, saddle-node and
transcritical bifurcations as discussed in [34].

In this study, we carry out a bifurcation analysis for the system
of delayed differential equations using the DDEBIFTOOL [8], which
is designed to handle the delay. The original model [14] had three
discrete time-delays (one corresponding to each ovarian hormone)
which represented the time interval between changes in ovarian
hormone concentrations and subsequent changes they cause in
synthesis rates of the pituitary hormones. Here we show that
including only a delay of s = 1.5 days for the effect of the peptide
inhibin on the pituitary’s secretion of FSH improves the fit to the
Welt data (see Fig. 1) and this time lag in the effect of inhibin is
consistent with observations from experiments with rhesus mon-
keys [26]. The other two delays, which pertain to the steroids E2

and P4, were less than a day and did not contribute significant
additional improvement. So they are set to zero for this study.
The system with the inhibin delay has larger uniqueness intervals
than the model with no delay (see Table 2). Hence, an inhibin delay
may enhance the possibility of ovulation. In Section 3 we speculate
about the biological reasons for this improvement in model behav-
ior due to inhibin delay. We examine bifurcation diagrams with re-
spect to KmLH for the delayed system and show that the cycle
uniqueness interval is usually determined by two saddle-node
bifurcations. For the delay s fixed at 1.5 days, we illustrate how this
interval may be enlarged by varying c2 due to the occurrence of
two degenerate Hopf bifurcations. Then for fixed c2, we increase
the delay parameter s from 0 to 1.5 to unfold transcritical bifurca-
tions and produce large cycle uniqueness intervals. Finally, we
illustrate how loops in the KmLH bifurcation diagrams may appear
and disappear by varying the parameters s and c2.

2. Biological background and model equations

The menstrual cycle for an adult female consists of the follicular
phase, ovulation, the luteal phase and menstruation (e.g., see Odell
[22] or Ojeda [23]). Pulses of gonadotropin-releasing hormone
(GnRH) produced by the hypothalamus modulate pulses of FSH
and LH secreted by the pituitary. These pulses are on a time scale
of minutes but, because the ovaries respond to average daily blood
levels [22], our model tracks average daily concentrations of FSH
and LH. Hence we lump the effects of the hypothalamus and the
pituitary together and just consider the synthesis and release of
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Fig. 1. LH and E2 simulations for three cycles of the Welt model with inhibin delay s of 1.5 days (green curves) and no delay (red curves) with data points (84 black dots)
corresponding to the 28 day data from Welt et al. [39] plotted three times. The vertical dashed line indicates day 29, where the second cycle begins and where both solution
orbits are very close to one another.
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FSH and LH on the time scale of days. This simplification results in a
model which gives good fit to the daily data of Welt et al. [39] and
which avoids the complication of multiple time scales.

During the follicular phase, FSH produced by the pituitary gland
promotes the development of 6–12 follicles. Typically one domi-
nant follicle is selected to grow to maturity and to produce a large
amount of E2 which primes the pituitary for LH secretion. At mid-
cycle, a surge of LH over a period of 4 or 5 days results in ovulation.
After releasing its ovum, the dominant follicle becomes the corpus
luteum which produces hormones in preparation for pregnancy
and produces P4 and Inh which inhibit LH and FSH, respectively.
If fertilization does not occur, the corpus luteum atrophies, men-
struation follows and a rise in FSH marks the beginning of the next
cycle.

Harris [13], Harris-Clark et al. [14], Pasteur [24], Schlosser and
Selgrade [32], and Selgrade and Schlosser [36] developed a model
for this endocrine control system based on 13 ordinary differential
equations (S) with three auxiliary equations (A) and with discrete
time delays. Four of these differential equations (S1)–(S4) describe
the synthesis, release and clearance of LH and FSH. The state vari-
ables RPLH and RPFSH represent the amounts of these hormones in
the pituitary and LH and FSH represent the blood concentrations
of these hormones. The biological literature (e.g., [16,19,41]) indi-
cates that LH exhibits a biphasic response to E2. To capture this
our model assumes that the effect of E2 on LH synthesis is different
than the effect on LH release, i.e., E2 inhibits release (see the
denominator of the second term in (S1)) but at high levels E2 pro-
motes synthesis (see the Hill function in the numerator of the first
term of (S1)). On the other hand, P4 inhibits LH synthesis but pro-
motes release. The release term appears in (S1) as a decay term and
in (S2) as a growth term, where it is divided by blood volume v.
Equations (S3) and (S4) for FSH are similar except the synthesis
term has Inh inhibition which is delayed by time s. The parameters
in (S1)–(S4) are named according to the traditional usage for chem-
ical reactions, e.g., V1,LH denotes the velocity of the reaction (see
Keener and Sneyd [17]).

The state variables in (S5)–(S13) represent tissue masses of nine
distinct stages of the ovary during the follicular and luteal phases
of the cycle. ReF, SeF and PrF denote the recruited follicles, the sec-
ondary follicles and the preovulatory or dominant follicle, respec-
tively. Ov1 and Ov2 represent periovulatory stages and Luti,
i = 1, . . . , 4, denote four luteal stages. LH and FSH promote tissue
growth within a stage and the transformation of tissue from one
stage to the next. Since clearance from the blood of the ovarian
hormones is on a fast time scale, we assume that blood levels of
E2, P4, and Inh are at quasi-steady state [17] as did Bogumil et al.
[4]. Hence, we take these concentrations to be proportional to
the tissue masses during the appropriate stages of the cycle giving
the three auxiliary equations (A1)–(A3) for the ovarian hormones.
Here we study the 13-dimensional system (S) with (A), which has
one time delay s. Forty-two parameters are listed in Table 1 and
correspond to those which Selgrade [34] used to analyze bifurca-
tion diagrams for the Welt system with time delay set to zero.

System (S) and (A) with the parameters in Table 1 has a stable
periodic solution of period 28 days and this solution represents an
ovulatory menstrual cycle. This periodic solution gives a very good
approximation (see Fig. 1) to the 28 day data set of Welt et al. [39]
which contains daily average hormone values computed from
blood samples of 23 normally cycling women ranging in age from
20 to 34 years. Because of various intrinsic and extrinsic factors, it
is highly unlikely that the cycle length of an individual woman will
be always 28 days or that her cycle will be exactly periodic even for
a short span of time. The extensive study of Treloar et al. [37] indi-
cated wide variation in inter-person and intra-person cycle length.
In fact, a recent dynamical systems analysis [6] of cycle length data
over a 20 year span suggested that the menstrual cycle should be

described by a chaotic dynamical system. Also, apparent quasi-
periodic behavior [31] has been exhibited by a model for the bo-
vine estrous cycle [3], which has some structural similarities to
our system. In spite of this variability, Treloar et al. [37] concluded
that the ‘‘menstrual interval for many persons and covering a wide
span of chronologic age should, however, be expected to average
within a few days of the oft-quoted 28.’’

Auxiliary equations (A)

E2 ¼ e0 þ e1 SeF þ e2 PrF þ e3 Lut4; ðA1Þ
P4 ¼ p0 þ p1 Lut3 þ p2 Lut4; ðA2Þ
Inh ¼ h0 þ h1 PrF þ h2 Lut2 þ h3 Lut3; ðA3Þ

System (S)

d
dt

RPLH ¼
V0;LH þ V1;LHE8

2

Km8
LHþE8

2

1þ P4=KiLH;P
� kLH½1þ cLH;PP4�RPLH

1þ cLH;EE2
; ðS1Þ

d
dt

LH ¼ 1
v

kLH½1þ cLH;PP4�RPLH

1þ cLH;EE2
� aLHLH; ðS2Þ

d
dt

RPFSH ¼
VFSH

1þ Inhðt � sÞ=KiFSH;Inh
� kFSH½1þ cFSH;PP4�RPFSH

1þ cFSH;EE2
2

; ðS3Þ

d
dt

FSH ¼ 1
v

kFSH½1þ cFSH;PP4�RPFSH

1þ cFSH;EE2
2

� aFSHFSH; ðS4Þ

Table 1
Parameters and values for system (S) and auxiliary
equations (A).

Eqs. (S1)–(S4)

s 1.5 days
kLH 2.42 day�1

aLH 14.0 day�1

V0,LH 500 IU/day
V1,LH 4500 IU/day
KmLH 200 pg/mL
KiLH,P 12.2 ng/mL
cLH,E 0.004 mL/pg
cLH,P 0.26 mL/ng
VFSH 375 IU/day
aFSH 8.21 day�1

kFSH 1.90 day�1

cFSH,E 0.0018 mL2/pg2

KiFSH,Inh 3.5 IU/mL
cFSH,P 12.0 mL/ng
v 2.50 L

Eqs. (S5)–(S13)

b 0.05 L lg/(IU day)
c1 0.08 L/(IU day)
c2 0.07 (L/IU)a/day
c3 0.13 (L/IU)b/day
c4 0.027 L/(IU day)
c5 0.51 (L/IU)c/day
d1 0.50 day�1

d2 0.56 day�1

k1 0.55 day�1

k2 0.69 day�1

k3 0.85 day�1

k4 0.85 day�1

a 0.79
b 0.16
c 0.02

Eqs. (A)

e0 30 pg/mL p2 0.048 kL�1

e1 0.11 L�1 h0 0.4 IU/mL
e2 0.21 L�1 h1 0.009 IU/(lg mL)
e3 0.45 L�1 h2 0.029 IU/(lg mL)
p0 0 ng/mL h3 0.018 IU/(lg mL)
p1 0.048 kL�1
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d
dt

ReF ¼ b FSH þ ½c1 FSH � c2 LHa�ReF; ðS5Þ

d
dt

SeF ¼ c2 LHa ReF þ ½c3 LHb � c4 LH�SeF; ðS6Þ

d
dt

PrF ¼ c4 LH SeF � c5 LHc PrF; ðS7Þ

d
dt

Ov1 ¼ c5 LHc PrF � d1 Ov1; ðS8Þ

d
dt

Ov2 ¼ d1 Ov1 � d2 Ov2; ðS9Þ

d
dt

Lut1 ¼ d2 Ov2 � k1 Lut1; ðS10Þ

d
dt

Lut2 ¼ k1 Lut1 � k2 Lut2; ðS11Þ

d
dt

Lut3 ¼ k2 Lut2 � k3 Lut3; ðS12Þ

d
dt

Lut4 ¼ k3 Lut3 � k4 Lut4: ðS13Þ

3. Effect of inhibin delay on model fit to data

Inhibin is a glycoprotein secreted by the ovaries and has a more
complicated molecular structure than the steroids E2 and P4. It is
well-known, e.g., see [10,33,41], that inhibin inhibits FSH synthesis.
However, its mode of action has not been determined definitively
but may involve competition with activin (which stimulates FSH)
for the activin receptor or may bind with its own receptor [29]. Bio-
logical evidence indicates that this process of FSH suppression re-

quires a significant time lag which is species-specific. For
instance, it has been observed that, in vitro, inhibin suppresses
FSH synthesis in bovine [10] and ovine [33] pituitary cells with a
time lag of up to 72 h. In vivo experiments with rhesus monkeys
by Ramaswamy et al. [26] reported FSH suppression with a time
delay of about 48 h but, in rats, Robertson et al. [28] observed only
a 4–8 h delay. In menstrual cycle ‘‘time-lagged analyses,’’ Robert-
son et al. [30] computed a negative correlation between inhibin
and FSH follicular phase data 72 h later. Our mathematical model
requires an inhibin time delay of 36 h to obtain a very good
approximation to the clinical data of Welt et al. [39]. This delay
is consistent with current biological evidence and may suggest
hypotheses for future biological experimentation.

System (A) and (S) with the inhibin delay has an asymptotically
stable cycle of period 28 days instead of 26 days for the no-delay
model [34]. The LH data indicates a 14 day follicular phase and
the position and height of the LH surge for the delay model is con-
sistent with that (see Fig. 1). Also, the delay E2 follicular and luteal
peaks are higher than E2 for the no-delay model. To understand
from a mathematical point of view why the inhibin delay is
responsible for these differences we examine hormone profiles
and ovarian stages for both models over three carefully chosen
consecutive cycles. MATLAB simulations of both models were run
with the following initial conditions (rounded to two decimal
places) given in the order of the 13 state variables in (S), {29.65,
6.86, 8.47, 6.15, 3.83, 11.51, 5.48, 19.27, 45.64, 100.73, 125.95,
135.84, 168.71}. The simulations were aligned so that both delay
and no-delay periodic orbits are as close to one another as possible
at the beginning of their second cycle, indicated by the vertical line
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Fig. 2. FSH and Inh simulations for three consecutive cycles of the delay model (green curves) and the no delay model (red curves) with 84 data points [39]. The vertical
dashed line indicates day 29, the beginning of the second cycle. From day 14.5 to day 33.5 the synthesis of delay FSH is suppressed more than the synthesis of no delay FSH
because of inhibin differences.
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at day 29 in Figs. 1–3. This was done so that the point of our com-
parison would be the second cycle in these figures and the preced-
ing cycle would also be plotted because hormone profiles during
the luteal phase of the preceding cycle influence behavior in our
comparison cycle.

The key feature to observe in Fig. 2 is that the no-delay FSH (red
curve) is higher than the delay FSH from day 19 until day 34, which
includes the first six days of the follicular phase of our comparison
cycle. Since FSH stimulates follicular development, the no-delay
ovarian stages of the second cycle increase sooner than the delay
ovarian stages and the no-delay cycle is advanced ahead of the de-
lay cycle (see Fig. 3). No-delay FSH is higher because delay Inh has a
greater inhibitory effect than no-delay Inh on FSH synthesis (see
(S3)) during that period. Delay Inh (green curve) is greater than
no-delay Inh from day 15 to day 22 where the curves cross and
then both curves decrease in parallel until day 33.5. These Inh

curves are so close to one another (see Fig. 2) from day 22 to day
33.5 that the delay of 1.5 days results in delay Inh(t � 1.5) being
greater than no-delay Inh(t) for this time interval. In fact, model
simulations indicate that delay Inh(t � 1.5) is greater than no-delay
Inh(t) for 14.5 6 t 6 33.5. Effectively, for this interval of 19 days,
the synthesis of delay FSH is suppressed more than the synthesis
of no delay FSH. This causes the no-delay follicles to develop sooner
than the delay follicles with the consequence via (A1) that no-
delay E2 rises sooner (see Fig. 1). Since E2 inhibits FSH release
(see (S3-S4)), this earlier rise in E2 tends to decrease no-delay
FSH sooner than delay FSH with the result that the no-delay follic-
ular stages develop to a lesser extent than the delay stages (Fig. 3).
Also, because E2 promotes LH synthesis, the LH surge is earlier and
smaller for the no-delay model (Fig. 1). The cumulative effect of
these profile differences is a shortening of the no-delay cycle
length by 2 days and a reduction in no-delay hormone peaks.
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Fig. 3. First three ovarian stages ReF, SeF and PrF for three consecutive cycles of the delay model (green curves) and the no delay model (red curves). (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
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A similar effect has been observed in older reproductive wo-
men, e.g., see Welt et al. [39], Klein et al. [18] and Hale et al.
[12]. After age 35 a decrease in the number of follicles results in
a decrease in inhibin and a consequential earlier follicular rise in

FSH and E2 and reduced cycle length as compared to younger wo-
men. Hence, the timing and serum concentration of inhibin appear
to have significant effects on ovarian development during the fol-
licular phase of the cycle.
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Table 2
Size of cycle uniqueness interval for inhibin delay s = 0 (column 2) and s = 1.5 days (column 4) for increasing values of c2. c2 = 0.07 and KmLH = 200 pg/mL give the best fit to data.

c2 Size (s = 0) KmLH bounds (s = 0) Size (s = 1.5) KmLH bounds (s = 1.5)

0.03 126 147 < KmLH < 273 271 40 < KmLH < 311
0.04 50 181 < KmLH < 231 226 44 < KmLH < 270
0.05 81 153 < KmLH < 234 173 85 < KmLH < 258
0.06 118 122 < KmLH < 230 167 80 < KmLH < 247
0.07 114 98 < KmLH < 212 154 73 < KmLH < 227
0.08 102 84 < KmLH < 186 141 63 < KmLH < 204
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4. Cycle uniqueness interval

The parameters KmLH and c2 are two of the three most sensitive
parameters when sensitivity is measured with respect to the E2 fol-
licular peak as system output [24,35]. This E2 peak is chosen as sys-
tem output because a significant follicular E2 level is necessary for
the LH surge to occur. The parameter KmLH is the half-saturation
constant in the Hill function in (S1), V1;LH E8

2

� �
= Km8

LH þ E8
2

� �
. This

sigmoidal shaped function (see Fig. 4) acts like a threshold for
the synthesis of LH in response to E2 blood levels. Once E2 concen-
tration reaches the value KmLH, half way up the sigmoid as indi-
cated by the dashed line in Fig. 4, then the pituitary is
synthesizing LH in large amounts, which is necessary for ovulation.
For larger values of KmLH, E2 must reach a higher level to produce
the same LH synthesis rate. Because higher follicular E2 levels
may suggest a greater probability of abnormal cycling [34,35],

we construct bifurcation diagrams where LH is plotted against
the parameter KmLH to determine the number of stable cycles for
a given KmLH value and to determine LH surge height along each
cycle. When similar bifurcation diagrams were drawn for the no-
delay model [34], an interval of KmLH values was observed for
which a unique stable periodic solution existed and it represented
an ovulatory cycle. The length of this cycle uniqueness interval var-
ied as the parameter c2 was changed [34]. The present study re-
veals that these uniqueness intervals are larger for the model
with inhibin delay, (A) and (S), as indicated in Table 2.

Here, the software DDEBIFTOOL [8] is used to construct bifurca-
tion diagrams where the maximal LH value along a periodic solu-
tion or at a steady-state solution is plotted against the parameter
KmLH. Fig. 5 displays this bifurcation diagram where the remaining
parameters are those in Table 1. Stable and unstable periodic orbits
and equilibria are depicted. Saddle-node (SN) and Hopf (HB)
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bifurcations are labeled. The curve along the lower portion of Fig. 5
tracks an equilibrium, which undergoes a supercritical Hopf bifur-
cation as KmLH increases through 64 and another supercritical Hopf
bifurcation at KmLH = 248. The bifurcation at KmLH = 64 results in a
small amplitude, stable, periodic orbit which persists until
KmLH = 73. Stable and unstable cycles appear together at KmLH = 68
via a saddle-node bifurcation of periodic orbits. The unstable orbit
coalesces with the small amplitude stable Hopf orbit at KmLH = 73
and both disappear in another saddle-node. The stable cycle
appearing at KmLH = 68 grows in amplitude, continues across the
top portion of the diagram and disappears in a saddle-node at
KmLH = 282. This branch of periodic solutions represents the ovula-
tory cycles of the model (S) with (A), where the ⁄ indicates the cy-
cle corresponding to the KmLH value of Table 1, 200 pg/ml.
Analogous behavior occurs at the right side of the bifurcation dia-
gram where the hysteresis character of the curve of periodic orbits
is evident. Clearly, for KmLH from 227 to 282 there is a stable, large

amplitude ovulatory cycle and a stable, small amplitude non-
ovulatory cycle or stable equilibrium. For KmLH in the interval be-
tween the lower SN’s in Fig. 5 (73 < KmLH < 227), there is only
one stable cycle and it is ovulatory. Selgrade [34] referred to this
KmLH interval as the cycle uniqueness interval. In the context of
this cycle regulation model, a woman’s KmLH parameter must fall
within her cycle uniqueness interval for her to be assured of only
a normal cycle. From Fig. 5, we observe that decreasing KmLH from
200 pg/mL keeps it within the interval and increases the height of
the LH surge. However, increasing KmLH to 227 moves KmLH to a re-
gion of multiple stable cycles and possible non-ovulation. For
c2 = 0.07, the diameter of this cycle uniqueness interval is 154 for
the delay model and only 114 for the no-delay model (see Table 2).

For the no-delay model, Selgrade [34] investigated how varia-
tions in the ovarian transfer parameter c2 changed the size of the
cycle uniqueness interval. Increasing c2 from c2 = 0.07 causes an in-
creased transfer of mass from the first follicular stage ReF to the
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second stage SeF which diminishes the development of not only
ReF but of all subsequent ovarian stages. Effectively, ovarian hor-
mone production is reduced and the cycle uniqueness interval is
decreased for both delay and no-delay models. For a biological
interpretation, we conjecture that too large a c2 parameter stunts
the growth of small recruited follicles and results in diminished
ovarian mass during the follicular phase. However, ovulation
may still occur. Table 2 lists the cycle uniqueness intervals for var-
ious values of c2 which we compute for the delay model (s = 1.5)
and which were reported in [34] for the no-delay model (s = 0).
Decreasing c2 from 0.07 in increments of 0.01 widens the cycle
uniqueness interval for the delay model but shrinks it for the no-
delay model until c2 = 0.03. This is an important difference be-
tween the delay and the no-delay models and indicates a certain
amount of biological inexplicability in the no-delay model. Mathe-
matically, for the no-delay model as c2 decreases, the cycle unique-
ness interval shrinks because the hysteresis curves enlarge and the
Hopf points move closer together resulting in a narrowing of the
gap between the lower two saddle-nodes. Then, as described in
[34], an unfolding of a transcritical bifurcation occurs as c2 de-
creases through 0.0305 and this results in the disappearance of
the left hysteresis curve and a rapid expansion of the cycle unique-
ness interval (see Table 2 for s = 0, c2 = 0.04 and c2 = 0.03). In con-
trast, for the delay model, decreasing c2 from 0.07 causes the
hysteresis curves to enlarge only slightly (compare Figs. 5 and 6)
and the Hopf points to move apart. Instead of disappearing due
to a transcritical bifurcation, the left hysteresis curve in the delay
bifurcation diagram disappears due to two degenerate Hopf bifur-

cations described below. The uniqueness interval for s = 1.5 when
c2 = 0.03 (Fig. 7) is over twice as large as that for the no-delay mod-
el. The inhibin delay (s = 1.5) and the additional growth of the first
follicular stage (smaller c2) result in a large interval of KmLH values
where there is a unique ovulatory menstrual cycle.

The broad expansion of the cycle uniqueness interval for c2 less
than 0.05 is due to two different unfoldings of degenerate Hopf
bifurcations which occur for c2 near 0.05. Each Hopf bifurcation
is degenerate because the real part of the eigenvalue pair crossing
the imaginary axis has a zero derivative with respect to the param-
eter at crossing. One of these degeneracies occurs when two Hopf
points coalesce at c2 = 0.05147 and KmLH = 69.8458. At c2 = 0.05,
the left side of Fig. 6 displays a branch of stable cycles lying just
above a branch of unstable equilibria. Fig. 8(a) blows these curves
up at c2 = 0.051. They touch when c2 = 0.05147 producing a degen-
erate Hopf point. Then as c2 increases, the degenerate Hopf point
separates into two non-degenerate, supercritical Hopf points with
stable equilibria in between them pictured at c2 = 0.0516 in
Fig. 8(b). As discussed in Golubitsky and Schaeffer [11, p. 375] ,
the unfolding of this bifurcation may be described roughly by the
equation

�x3 þ ðKmLH � 69:8458Þ2xþ ð0:05147� c2Þx ¼ 0; ðDegHB1Þ

where x represents the state variable LH and the line {x = 0} repre-
sents the curve of equilibria. As c2 continues to increase above
0.052, the two Hopf points on the left in Fig. 9(a) coalesce in a sec-
ond degenerate Hopf point at c2 = 0.05209 and KmLH = 61.0174 and
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that Hopf point disappears for c2 > 0.05209. The unfolding of this
bifurcation may be represented by the equation (see [11])

x3 þ ðKmLH � 61:0174Þ2xþ ðc2 � 0:05209Þx ¼ 0: ðDegHB2Þ

As c2 increases above 0.05209, the saddle-nodes which deter-
mine the cycle uniqueness interval move closer together causing
the interval to shrink and move to the left, see Table 2.

As c2 increases from 0.04 to 0.045, the left hysteresis curve
forms because of the appearance of a kink and two saddle-nodes
along the left edge of the large loop of periodic solutions
(Fig. 10). This kink and the two degenerate Hopf unfoldings
(DegHB1 and DegHB2) are embedded in the continuous display
of bifurcation diagrams as c2 increases from 0.04 to 0.055, see
Fig. 10.

5. Comparing bifurcation diagrams as delay s varies

For all c2 values in Table 2, the delay model has a larger cycle
uniqueness interval than the no-delay model. As discussed previ-
ously, when KmLH = 200 and c2 = 0.07 the delay in the effect of in-
hibin on FSH results in more vigorous growth of ovarian stages, a
longer cycle and higher hormone peaks. Numerical simulations
indicate that this is also true after reasonable variations in both
model parameters, KmLH and c2. It is conceivable that the more ro-
bust ovarian development of the delay model permits a broader
range of half-saturation constants KmLH for the successful surge re-
sponse of LH to E2 priming and, hence, a larger cycle uniqueness
interval. Bifurcation diagrams for various values of s support this
suggestion.

First we fix c2 = 0.07, which is the parameter value fitting the
data best (see Table 1). We draw bifurcation diagrams with respect
to KmLH to study how the cycle uniqueness interval opens up as the
delay s increase from 0 to 1.5. Fig. 11 illustrates these diagrams for
s values increasing from s = 0 to s = 1.5 by increments of 0.5. As s
increases the Hopf points (HB) along the curve of equilibria spread
apart as do the saddle-nodes (SN), which determine the cycle
uniqueness interval. The qualitative features of these diagrams
are similar. In particular, there are hysteresis curves on both the
left and right edges of a large loop of periodic solutions. The hyster-
esis curves give rise to two regions of periodic bistability.

For other values of c2, these two hysteresis curves do not persist
for all values of s. For instance, if c2 = 0.04 then the hysteresis curve
on the left disappears as s increases. The cycle uniqueness interval
enlarges from 50 when s = 0 to 226 when s = 1.5. The primary rea-
son for this drastic increase is a sequence of bifurcations that occur
as s increases from 0.7 to 1.2. A degenerate Hopf bifurcation simi-
lar to that described by (DegHB2) occurs at s = 0.73 resulting in a
bump of stable cycles to the left of the large loop of periodic solu-
tions as pictured in Fig. 12. This Hopf bump of stable solutions is
just below the branch of unstable cycles in the left hysteresis curve
and, as s increases, this bump grows and touches the curve of cy-
cles above producing a transcritical bifurcation of periodic solu-
tions in the parameter KmLH when s = 1.06. The unfolding of this
transcritical bifurcation is analogous to that discussed in [34] ex-
cept here the second parameter is s instead of c2. For s values just
above 1.06 the bump of stable cycles appears on the other side of
the large loop of cycles (see Fig. 12) and disappears via the
following sequence of bifurcations. At s = 1.11 a degenerate Hopf
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bifurcation like (DegHB1) causes the Hopf bump to separate from
the curve of equilibria producing a small closed loop of periodic

solutions (Fig. 13). Then this loop shrinks and disappears because
the two saddle-nodes at each end of the loop coalesce and annihilate
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one another at s = 1.173. The unfolding of these bifurcations as s in-
creases from 0.7 to 1.2 is animated in Fig. 12.

The transcritical bifurcation is a prominent feature of the left
side of the bifurcation diagrams for smaller values of s. When this
bifurcation is present in the diagram, the cycle uniqueness interval
has reduced length, e.g., only 125 for the first frame of Fig. 14. The
transcritical bifurcation persists for the parameter pairings in
Fig. 14 until the transcritical bifurcation point coalesces with a sad-
dle-node for s � 1.45. As s increases, the cycle uniqueness interval
grows although c2 is also increasing (see the animation for Fig. 14).
Hence, a larger delay in the effect of inhibin may compensate for an
apparent reduction in growth of the first follicular stage of a cycle.
In fact, an increase in FSH inhibition during the luteal phase of the
previous cycle due to the delay in inhibin results in greater early
follicular development during the next cycle (see the middle cycle
in Fig. 3).

6. Summary and conclusion

The half-saturation parameter KmLH in the Hill function in (S1)
indicates the level of E2 sufficient for significant LH synthesis. We
study bifurcation diagrams where maximum LH along a periodic
or equilibrium solution is graphed against KmLH. We observe an
interval of KmLH values for which the model admits a unique stable
periodic solution and this solution represents an ovulatory cycle. A
large cycle uniqueness interval signifies a wide range of follicular
E2 levels which promote a LH surge sufficient for ovulation. This cy-

cle uniqueness interval is usually determined by two saddle-node
bifurcations which lie on hysteresis curves at the left and right
sides of the bifurcation diagram.

The parameter s is the time delay for the inhibition of FSH syn-
thesis caused by inhibin. In Section 3, we explain why a delay of 1.5
days (the value of s fitting the data best) is consistent with biolog-
ical evidence and permits increased ovarian development during
the follicular phase of the cycle and a larger interval of KmLH values
which result in a unique cycle. The ovarian growth parameter c2

promotes mass transfer between the first two stages of ovarian
development and is indicative of healthy follicular growth. For var-
ious values of c2, we illustrate how the cycle uniqueness interval
grows as s increases due to the occurrences of transcritical and
degenerate Hopf bifurcations, e.g., see Fig. 12. Also, for delay s near
1.5 days, Section 4 asserts that the cycle uniqueness interval in-
creases as c2 decreases because of additional growth of the first fol-
licular stage, which represents small antral follicles.

Model simulations and bifurcation diagrams studied here imply
that parameter combinations which provide for the sustained
growth of small antral follicles at the beginning of the cycle may
result in a greater possibility of normal cycling.
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Appendix A. Supplementary data

Supplementary data associated with this article can be found, in
the online version, at doi:10.1016/j.mbs.2011.09.001.
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