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Abstract

This chapter develops a mathematical model describing blood levels of five hormones im-
portant for regulating the menstrual cycle of adult women. The resulting system of 13
nonlinear, delay, differential equations with 44 parameters correctly predicts the serum
concentrations of ovarian and pituitary hormones found in the biological literature for
normally cycling women. In addition to this normal cycle, the model exhibits another
stable cycle which may describe a biologically feasible “abnormal” condition such as poly-
cystic ovarian syndrome. Model simulations illustrate how one cycle can be perturbed to
the other cycle. This model may be used to test the effects of external hormone therapies
on abnormally cycling women as well as the effects of exogenous compounds on normally
cycling women. Sensitive parameters are identified and bifurcations in model behavior
with respect to changes in these parameters are examined. Modeling various aspects of
menstrual cycle regulation should be helpful in predicting successful hormone therapies,
in studying the phenomenon of cycle synchronization and in understanding many factors
affecting the aging of the female reproductive endocrine system.



Chapter 1

1.1 Introduction

Complex endocrine signaling between the ovaries and the hypothalamus and pituitary

glands is crucial for regulating and maintaining the female reproductive system of many

mammals and birds. Abnormal levels of reproductive hormones often result in cycle irreg-

ularities. For instance, polycystic ovarian syndrome (PCOS), a leading cause of infertility

in women [1, 2, 61], is usually associated with hormonal imbalances. Many PCOS women

exhibit high androgen and low progesterone levels and their estrogen fluctuates very little

during the month at levels which may be contraceptive [61]. Another example pertains

to the observation that the breeding of dairy cows to maximize milk production is con-

current with a decrease in bovine fertility [39, 42, 43, 54]. There is evidence that high

milk yield cows have lower amounts of progesterone and luteinizing hormone than cows

which were not genetically engineered. Also, there is concern [10, 31, 44, 58] that envi-

ronmental substances with estrogenic activity may disrupt the sexual endocrine system

and, hence, may contribute to the increased incidence of breast cancer [11], to declines in

sperm counts [52], and to developmental abnormalities [30]. Mathematical models may

be used to simulate the effects of exogenous compounds and hormonal treatments on the

reproductive endocrine system.

That the hypothalamus and pituitary glands are essential to the control of the female

reproductive cycle was not known until the twentieth century (see Greep [16]). Much

research (e.g., see [24, 33, 62, 63]) has been done to understand the physiological mech-

anisms involved in the regulation of the menstrual and estrous cycles. However, many

aspects are not completely understood because of experimental difficulties in determin-

ing these mechanisms especially at the level of the hypothalamus and pituitary. Modeling

various aspects of menstrual and estrous cycle regulation may be helpful in understanding

the roles of the many components of the reproductive endocrine system and may assist

the experimentalist by indicating directions of investigation.
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Most mathematical models of cycle regulation track blood levels of hormones pro-

duced by the brain and the ovaries. Follicle stimulating hormone (FSH) and luteinizing

hormone (LH), which are produced by the pituitary gland responding to signaling from

the hypothalamus, initiate the development of ovarian follicles and promote ovulation and

the formation of the corpus luteum (see [24, 62, 63]). Simultaneously, at least three ovar-

ian hormones, estradiol (E2), progesterone (P4), and inhibin (Inh), affect the synthesis

and release of LH and FSH (see [25, 27, 56]). One of the early models of the female repro-

ductive cycle was developed by N. Schwartz, 1970 [46], to describe the rat estrous cycle.

Similar to humans, a surge in LH leads to ovulation but rats ovulate at night so Schwartz’s

model contains a 24 hour clock to force the right timing of ovulation. Another early model

was published by Bogumil et al., 1972 [4, 5], which consists of 34 algebraic and ordinary

differential equations. In order to produce the LH surge, their model assumed that the

pituitary produced ’tonic’ and ’surge’ amounts of LH. They also expressed a LH surge

threshold in terms of convolution integrals to weight more heavily recent concentrations

of E2 and P4. Subsequent models of cycle regulation include McIntosh and McIntosh,

1980 [29] , and Plouffe and Luxenberg, 1992 [38]. For articles which review the literature

on mathematical models of the menstrual cycle and the estrus cycle, see Chávez-Ross [7]

and Vetharaniam et al. [55]. All of these models describe some biological mechanisms

but also many contain artificial features such as clocks or convolution integrals.

Over the last decade, we have developed and analyzed a mechanistic, deterministic,

mathematical model ([19, 20, 37, 45, 49, 50, 51]) which predicts average serum concen-

trations of FSH, LH, E2, P4 and Inh that agree with data in the biological literature for

normally cycling adult women (McLachlan et al. [32]). Because of the interplay between

the brain and ovaries, this system may be described as dual control. Hence the modeling

procedure is divided into three distinct steps. First we derive a linear system of ordinary

differential equations for the synthesis and release of FSH and LH in the pituitary which

respond to the signaling of the ovarian hormones E2, P4 and Inh. The McLachlan data

[32] are used to obtain explicit time-periodic input functions for serum levels of E2, P4,

and Inh and the unknown state variables in the system of differential equations are FSH

and LH. Then the parameters of this system are estimated from the McLachlan data

for FSH and LH using a numerical optimization routine such as Nelder-Meade [34, 59]

with least squares. The second step reverses this process by developing a model for the

monthly cyclic changes in the ovarian hormones E2, P4 and Inh under the influence of

the pituitary hormones FSH and LH. This linear system of differential equations for the

ovarian hormones contains parameters and time-periodic input functions for FSH and LH.

Parameter identification is performed on this system using the data from McLachlan et

al. [32] for E2, P4 and Inh. With a complete set of parameters determined, the final step
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is to merge these two linear systems into one system which is highly nonlinear because all

the variables are considered as state variables.

As an illustration of this process, suppose that experimental data over a span of time,

t, are available for two state variables x and y, where x = x(t) and y = y(t). First we

derive a single differential equation describing the rate at which the state variable x is

changing with respect to t based on known biological interactions between x, y, and dx
dt

.

The resulting equation contains an explicit input function y(t), derived empirically from

the data set, and contains unknown parameters values, p1, p2, . . . , pn. Equation (1.1.1)

gives an example of such a differential equation with two parameters p1 and p2 :

dx

dt
=

p1 y(t)

p2 + y(t)
x. (1.1.1)

Notice that the differential equation in (1.1.1) is linear in the state variable x and has a

time-dependent coefficient function p1 y(t)
p2+y(t)

. The existing experimental data for x are used

to estimate the parameters p1 and p2 by applying a parameter identification numerical

routine in conjunction with numerically solving the differential equation for x = x(t).

The procedure is then reversed by introducing a differential equation for the state

variable y which contains an explicit empirical approximation for x(t) derived from the

data and which contains unknown parameters, say p3 and p4. An example of such a

differential equation is given by (1.1.2) :

dy

dt
= p3 x(t) y + p4 x

2(t). (1.1.2)

Here experimental data for y and a parameter identification routine are used to estimate

p3 and p4 and numerically solve for y = y(t). With these estimates for the four model

parameters, p1, p2, p3, and p4, Equations (1.1.1) and (1.1.2) are then merged together to

create the following system of differential equations in (1.1.3) which describes the rates

at which the state variables x and y are changing with respect to time:

dx

dt
=

p1 x y

p2 + y
dy

dt
= p3 x y + p4 x

2

(1.1.3)

Notice that the system of differential equations in (1.1.3) is nonlinear in two state variables

x and y as compared to the single, linear differential equations in (1.1.1) and (1.1.2) . It

is important to note here that in order to fit this system of differential equations to the

existing data for x and y simultaneously, it may be necessary to re-estimate all four

parameters in (1.1.3), but the estimates already obtained serve as a good starting place.
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After discussing biological background, we present the three components of our men-

strual cycle model in detail.

1.2 Biological Preliminaries

Typically, a woman is born with from 500,000 to 700,000 primordial follicles and this

number decreases due to atresia with an increasing decay rate as the woman ages (e.g.,

see Hansen et al. 2008 [18]). During her reproductive life only a small number of these

follicles develop to ovulatory status before the onset of menopause, which occurs at an

average age of 51. The length of a normal menstrual cycle (Figure 1.2.1) for an adult

woman is 28 days on average but may range from 25 to 35 days (Ojeda [36]). The cycle

is divided into the follicular phase (roughly 14 days), ovulation and the luteal phase

(roughly 14 days). The brain regulates ovarian cycling via the hypothalamus and the

pituitary glands. The hypothalamus produces gonadotropin-releasing hormone (GnRH)

which modulates the pituitary’s secretion of the gonadotropin hormones FSH and LH

(see Clayton et al. [9]). To simplify our model we lump the effects of the hypothalamus

and the pituitary together and just consider the synthesis and release of FSH and LH.

These hormones are secreted in a pulsatile pattern on the time scale of minutes but,

because the ovaries respond to average daily blood levels (Odell [35]), our model tracks

average daily gonadotropin concentrations in the blood. As part of its normal function,

the ovary produces E2, P4, and Inh, which control the pituitary’s synthesis and release of

the gonadotropin hormones during the various stages of the cycle (Figure 1.2.1).

The follicular phase of the cycle begins with the first day of menstrual flow, when

blood levels of FSH rise and promote the recruitment and growth of 6 to 12 immature

follicles. As these follicles develop by adding layers of granulosa cells (Odell [35]), the

production of E2 increases. During the second third of the follicular phase, typically a

single dominant follicle is selected to continue its development and ultimately to release

its ovum and the remaining follicles begin to atrophy. We do not model the process of

follicle selection because the biological mechanism is not understood. As the ovaries pass

into the primary follicular stage, the dominant follicle grows more rapidly and produces

E2 in large amounts. During the first two-thirds of the follicular phase, LH levels are

roughly constant. But E2 primes the pituitary for gonadotropin synthesis and, one day

after E2 reaches its maximum, LH peaks at approximately 10 times its early follicular

concentration. This rapid rise and fall of LH over a period of 5 days is referred to as

the LH surge and is necessary for ovulation. The day of the LH peak is considered the

midpoint of the menstrual cycle and hormone data are usually centered at the day of LH
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Figure 1.2.1: The Follicular and Luteal Phases of the Menstrual Cycle. The outer ring
depicts various stages of the ovary during a monthly cycle. ReF, SeF and PrF represent the
recruited, secondary and primary follicle and Luti, i=1...4, represent the corpus luteum.
Directed arrows indicate hormonal actions.

surge before averaging is done or comparisons made. After a significant decrease during

the primary follicular stage, FSH also surges concurrently with LH.

Ovulation occurs within a day after the LH surge [36] and, hence, the dominant follicle

is transformed into the corpus luteum. The corpus luteum (“yellow body”) secretes

hormones in preparation for pregnancy and is characterized by increased fat storage in

the theca and granulosa cells. P4, which is low during the follicular phase, begins to rise

several days before ovulation and continues to increase to a maximum midway through

the luteal phase. The Inh profile is similar to that of P4. During the luteal phase P4 and

Inh inhibit the synthesis of LH and FSH, respectively, so that no immature follicles begin

to grow [8, 32]. If fertilization does not occur then the corpus luteum decreases in size

and hormone secretion and becomes inactive by the end of the month. The decline of the
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corpus luteum results in a decrease in P4 and Inh and, consequently, the removal of the

inhibition on LH and FSH synthesis. The resulting gradual rise in FSH at the end of the

month promotes the growth of a new cohort of immature follicles and initiates the next

cycle.

1.3 Model Development

Our modeling approach is divided into three components: the pituitary model, the ovarian

model and the merged model. The pituitary model describes the production of pituitary

hormones LH and FSH during the menstrual cycle in response to circulating ovarian

hormones E2, P4 and Inh (inputs to the model). The ovarian model describes follicular

and luteal development during the menstrual cycle and the production of the ovarian

hormones in response to the pituitary hormones LH and FSH (inputs to the model).

Each of these models are linear systems of differential equations with time-dependent

coefficients (inputs) that are derived empirically from existing clinical data. The third

component of the modeling process involves merging the pituitary and ovarian models

together, creating a 13-dimensional, highly-nonlinear, autonomous (time-independent)

system of differential equations that describes the stages of the menstrual cycle and the

interactions of all five hormones during the menstrual cycle while eliminating the use of

input functions derived from clinical data.

1.3.1 The Pituitary Model: Systems of Differential Equations

The pituitary model, first developed by Schlosser and Selgrade [45], describes the synthe-

sis, release, and clearance of LH and FSH based on the pituitary’s response to circulating

levels of the ovarian hormones E2, P4 and Inh. The model consists of two systems, the

LH system and the FSH system, of ordinary differential equations with time-dependent

coefficients. Each system is linear in its state variables, however the time-dependent co-

efficients are nonlinear functions of the ovarian hormones. Functions that approximate

clinical study data (McLachlan et al. [32]) for the daily mean serum levels of E2, P4 and

Inh during the menstrual cycle of 33 normally cycling women are used as inputs to the

pituitary systems in order to predict the serum levels of LH and FSH during that cycle.

Because the McLachlan data contain hormone values for 31 consecutive days, we assume

a menstrual cycle of period 31 days and use the following input functions to approximate

the ovarian hormone profiles over two menstrual periods :
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E2(t) = 62.5 + 230e−
(t−14)2

5 + 115e−
(t−23)2

20 + 230e−
(t−45)2

5 + 115e−
(t−54)2

20 (1.3.1)

P4(t) = 0.8 + 52.24e−
(t−22)2

19.15 + 52.24e−
(t−53)2

19.15 (1.3.2)

Inh(t) = 290 + 1401.5e−
(t−22)2

15 + 1401.5e−
(t−53)2

15 (1.3.3)
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Figure 1.3.1: Open circles are daily mean serum levels of estradiol, progesterone and
inhibin of 33 normally cycling women as measured by McLachlan et al. [32]. Time-
dependent functions (solid curves) approximating these values over two menstrual cycles
are used as inputs to the LH and FSH systems.

The ovarian input functions are graphed against the ovarian hormone data in McLachlan

et al. [32] over two menstrual cycles in Figure 1.3.1. In the McLachlan data, the follicular

phase E2 peak occurred at day 14 and the luteal peak occurred at day 23. To produce

these elevations in E2(t), we use negative exponential functions where the exponents are

translated to days 14 and 45 for the follicular phases and translated to days 23 and 54 for

the luteal phases of two cycles. The input functions P4(t) and Inh(t) are constructed in

a similar manner.
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Figure 1.3.2: The ovarian hormones control synthesis and release of LH and FSH in the
brain. Plus arrows indicate stimulation and minus arrows indicate inhibition.

The pituitary systems of differential equations model the synthesis, release, and clear-

ance of LH and FSH, in response to stimulatory and inhibitory effects of the ovarian

hormones. The schematic diagram in Figure 1.3.2 illustrates the effects of circulating

levels of E2, P4 and Inh and outlines two major modeling assumptions : (1) LH and FSH

synthesis occurs in the pituitary and (2) LH and FSH are held on reserve in the pituitary

in what we call the ”reserve pool” awaiting release into the bloodstream.

The LH system of differential equations has two state variables, RPLH , representing

the amount of LH in the reserve pool awaiting release into the bloodstream, and LH,

representing the concentration of LH in the blood. In the model, the synthesis and release

rates of LH are described as rational functions of ovarian hormones in which stimulatory

effects appear in the numerators and inhibitory effects appear in the denominators.

It has been shown that high blood levels of estradiol promote rapid LH synthesis,

therefore the numerator of the LH synthesis term contains a Hill function (see Equation

(1.3.6)) to reflect estradiol’s stimulatory effect on LH. This effect is most evident in the

late follicular phase of the menstrual cycle when large amounts of estradiol are secreted
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by the dominant follicle, inducing the LH surge. This Hill function was selected because

it increases rapidly as estradiol concentrations vary within a range of 200 and 600 pg/mL

during the late follicular phase. This range includes normal and elevated levels of estradiol

[45] and therefore the model can be used to monitor the effects of administering exogenous

estrogens to existing estradiol levels. The exponent in the Hill function, called the Hill

coefficient, was chosen to be h = 8 so that the Hill function begins increasing around 200

pg/mL and reaches its maximum around 600 pg/mL. It can easily be shown that if the

Hill coefficient is h = 9, the synthesis rate increases too rapidly and if h = 7 the increase

is not rapid enough. During the luteal phase of the cycle estradiol blood levels peak for a

second time, however, this peak is not as substantial as the late follicular phase peak. It

is believed that during this time progesterone blood levels inhibit LH synthesis [48]. The

period of time between changes in estradiol and progesterone blood levels and changes

in the synthesis rate of LH is captured by incorporating time delays, δE and δP , into the

input functions E2(t) and P4(t) which appear in the LH synthesis term.

It has also been shown that estradiol and progesterone have similar effects on the

release of LH and FSH into the bloodstream. A study by Chang and Jaffe [6] showed that

progesterone stimulates the release of LH and FSH when estradiol blood levels are in a

normal range during the late follicular phase. Tsai and Yen [53] demonstrated that blood

levels of LH and FSH decline after the administration of ethinyl estradiol. This suggests

that estradiol inhibits the release of LH and FSH into circulation. Finally, the clearance

rate of LH is assumed to be proportional to LH blood levels. Therefore the equations

that govern the synthesis, release, and clearance of LH have the form:

d

dt
RPLH = synLH(E2, P4)− relLH(E2, P4, RPLH) (1.3.4)

d

dt
LH =

1

v
relLH(E2, P4, RPLH)− clearLH(LH) (1.3.5)

where
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synLH(E2, P4) =

V0,LH +
V1,LH E2(t− dE)8

Km8
LH + E2(t− dE)8

1 + P4(t− dP )/KiLH,P
, (1.3.6)

relLH(E2, P4, RPLH) =
kLH [1 + cLH,P P4(t)] RPLH

1 + cLH,E E2(t)
, (1.3.7)

clearLH(LH) = aLH LH. (1.3.8)

The compartmental structure of the FSH system of differential equations is identical to

that of the LH system of differential equations with state variables, RPFSH , representing

the amount of FSH in the reserve pool, and FSH, representing the concentration of FSH

in the blood. However there are variations in the synthesis and release terms because

FSH responds differently to the ovarian hormones. There is evidence that inhibin has an

inhibitory effect on FSH synthesis [17, 21, 32, 47] and, as with E2(t) and P4(t) in the LH

synthesis term, a time delay δInh is used in the input function Inh(t) which appears in

the denominator of the FSH synthesis term (see Equation (1.3.11)).

Recall that estradiol and progesterone have similar effects on the release of LH and

FSH into the bloodstream: estradiol inhibits the release of LH and FSH and progesterone

stimulates the release of LH and FSH. Tsai and Yen [53] also showed that estradiol

has a greater inhibitory effect on FSH release. In addition, the preovulatory decline in

FSH blood levels, not present in the LH profile, provides further evidence of the greater

inhibitory effect of rising estradiol levels in the late follicular phase of the cycle. Therefore

a second order inhibitory effect of estradiol on FSH release is used in the FSH system of

differential equations instead of the first order effect used in the LH equations [45, 51].

Finally, the clearance rate of FSH is assumed to be proportional to FSH blood levels.

Therefore the equations that govern the synthesis, release, and clearance of FSH are

given by:

d

dt
RPFSH = synFSH(Inh)− relFSH(E2, P4, RPFSH) (1.3.9)

d

dt
FSH =

1

v
relFSH(E2, P4, RPFSH)− clearFSH(FSH) (1.3.10)

where
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synFSH(Inh) =
VFSH

1 + Inh(t− dInh)/KiFSH,Inh
(1.3.11)

relFSH(E2, P4, RPFSH) =
kFSH [1 + cFSH,P P4(t)] RPFSH

1 + cFSH,E (E2(t))2
(1.3.12)

clearFSH(FSH) = aFSH FSH (1.3.13)

1.3.2 The Ovarian Model: System of Differential Equations and
Auxiliary Equations

The ovarian model, first developed by Selgrade and Schlosser [51], describes nine stages

in the monthly development of the ovary and the production of the ovarian hormones

E2, P4 and Inh. The model consists of a linear, time-dependent system of nine ordinary

differential equations that represent the active capacities of follicular and luteal tissue to

produce hormones under the influence of the pituitary hormones. Here ”active” means

actively growing and secreting hormones. The follicular phase of the menstrual cycle is

divided into three stages: the recruited follicular stage ReF, the secondary follicular stage

SeF, and the primary follicular stage PrF. Ovulation and luteinization are represented by

two ovulatory follicular stages: Ov1 and Ov2. The luteal phase of the cycle is represented

by four stages of luteal development: Luti where i = 1 . . . 4.

The pituitary hormones stimulate the growth of follicular tissue within a stage and the

transfer of follicular tissue from one stage to the next as indicated in Figure 1.3.3. The

capacity to produce hormones at each stage of the cycle is assumed to be proportional to

the mass of the ovarian follicles or corpus lutea at that stage and therefore, the schematic

diagram of the ovarian model in Figure 1.3.3 also illustrates the stages of luteal tissue

development and the production of E2, P4 and Inh by the secondary follicles, primary

follicle and the corpus luteum.

Functions that approximate the date in McLachlan et al. [32] for the daily mean

serum levels of LH and FSH are used as inputs to the ovarian system in Equations

(1.3.16) - (1.3.24) in order to predict the serum levels of E2, P4 and Inh during that

cycle. Using the McLachlan data, we assume a menstrual cycle of period 31 days and

use the following input functions to approximate the pituitary hormone profiles over two

menstrual periods :
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Figure 1.3.3: The compartments represent stages of follicular and luteal development
during one menstrual cycle. FSH and LH promote growth and transition between stages.
The ovarian stages secrete hormones as indicated on the right.

FSH(t) = 175e
−(t−5)2

110 + 210e−(t−15)2 + 65e
−(t−18)2

20 + 174.85e
−(t−36)2

121

205e−(t−46)2 + 65e
−(t−49)2

20 + 175e
−(t−67)2

130 , (1.3.14)

LH(t) = 0.156 + 24.38e
−(t−7)2

230 + 332.12e−(t−15)2 + 17.24e
−(t−18)2

35.16 +

24.38e
−(t−38)2

230 + 332.12e−(t−46)2 + 17.24e
−(t−49)2

35.16 + 24.38e
−(t−69)2

230 .(1.3.15)

These functions are used to approximate the pituitary hormone profiles in McLachlan et

al. [32] over two menstrual periods as seen in Figure 1.3.4 and are used as inputs to the
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Figure 1.3.4: Daily mean serum levels of LH and FSH for 33 normally cycling women
as measured by McLachlan et al. [32]. Time dependent functions approximating these
values over two menstrual cycles are as used as inputs to the ovarian model.

following system of ordinary differential equations representing the ovarian model :

d

dt
ReF = b FSH(t) + [c1 FSH(t)− c2 (LH(t))α] ReF (1.3.16)

d

dt
SeF = c2 (LH(t))αReF +

[
c3 (LH(t))β − c4 LH(t)

]
SeF (1.3.17)

d

dt
PrF = c4 LH(t)SeF − c5 (LH(t))γ PrF (1.3.18)

d

dt
Ov1 = c5 (LH(t))γ PrF − d1Ov1 (1.3.19)

d

dt
Ov2 = d1Ov1 − d2Ov2 (1.3.20)

d

dt
Lut1 = d2Ov2 − k1 Lut1 (1.3.21)

d

dt
Lut2 = k1 Lut1 − k2 Lut2 (1.3.22)

d

dt
Lut3 = k2 Lut2 − k3 Lut3 (1.3.23)

d

dt
Lut4 = k3 Lut3 − k4 Lut4 . (1.3.24)

The first term b FSH(t) in Equation (1.3.16) initiates the recruitment and growth of
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inactive antral follicles. During the follicular phase of the cycle, follicular growth rates

and transfer rates are assumed to be proportional to FSH(t) and powers of LH(t) as

indicated by Equations (1.3.16) - (1.3.19). The transition from the secondary follicular

stage to the primary follicular stage depends on LH serum levels as indicated in Equations

(1.3.17) - (1.3.18) and corresponds to the selection of the dominant follicle. Since ovulation

and luteinization of the primary follicle are processes that are not instantaneous events

[35] they are represented by two stages of ovulatory follicular development, Ov1 and Ov2.

Little hormone production is assumed during this time. Finally, the model divides the

luteal phase of the cycle into four stages represented by Equations (1.3.21) - (1.3.24), and

reflects the corpus luteum as the primary source of P4 and Inh production.

Because the clearance of the ovarian hormones from the blood is rapid compared to

the clearance of the pituitary hormones, we assume that the blood levels of the ovarian

hormones are at quasi-steady state [26] and their concentrations are modeled as linear

combinations of the appropriate ovarian stages of the cycle. The following three auxiliary

equations represent the serum levels of the ovarian hormones :

E2 = e0 + e1 SeF + e2 PrF + e3 Lut4 (1.3.25)

P4 = p0 + p1 Lut3 + p2 Lut4 (1.3.26)

Inh = h0 + h1 PrF + h2 Lut3 + h3 Lut4 (1.3.27)

Because of the form of Equations (1.3.25) - (1.3.27), the effect of an exogenous ovarian

hormone on the menstrual cycle may be simulated by adding a function representing an

amount of that hormone to the appropriate equation.

1.3.3 The Merged Model

The third and final step of the modeling process, as developed by Harris-Clark et al.

[20], is to merge the pituitary model and ovarian model together to create a single 13-

dimensional system of nonlinear, delay differential equations (1.3.28)-(1.3.40) with three

auxiliary equations (1.3.25) - (1.3.27). The merged system has the form:
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d

dt
RPLH =

V0,LH +
V1,LH E2(t− dE)8

Km8
LH + E2(t− dE)8

1 + P4(t− dP )/KiLH,P
− kLH [1 + cLH,P P4] RPLH

1 + cLH,E E2

(1.3.28)

d

dt
LH =

1

v

kLH [1 + cLH,P P4] RPLH
1 + cLH,E E2

− aLH LH (1.3.29)

d

dt
RPFSH =

VFSH
1 + Inh(t− dInh)/KiFSH,Inh

− kFSH [1 + cFSH,P P4] RPFSH
1 + cFSH,E E2

2

(1.3.30)

d

dt
FSH =

1

v

kFSH [1 + cFSH,P P4] RPFSH
1 + cFSH,E E2

2

− aFSH FSH (1.3.31)

d

dt
ReF = b FSH + [c1 FSH − c2 LHα] ReF (1.3.32)

d

dt
SeF = c2 LH

αReF +
[
c3 LH

β − c4 LH
]
SeF (1.3.33)

d

dt
PrF = c4 LH SeF − c5 LHγ PrF (1.3.34)

d

dt
Ov1 = c5 LH

γ PrF − d1Ov1 (1.3.35)

d

dt
Ov2 = d1Ov1 − d2Ov2 (1.3.36)

d

dt
Lut1 = d2Ov2 − k1 Lut1 (1.3.37)

d

dt
Lut2 = k1 Lut1 − k2 Lut2 (1.3.38)

d

dt
Lut3 = k2 Lut2 − k3 Lut3 (1.3.39)

d

dt
Lut4 = k3 Lut3 − k4 Lut4 . (1.3.40)

where the ovarian hormone functions E2, P4, and Inh in Equations (1.3.28)-(1.3.31) are

linear combinations of the ovarian state variables, as defined by the auxiliary equations

(1.3.25) - (1.3.27). The pituitary hormone functions LH and FSH in Equations (1.3.32)-

(1.3.35) are the pituitary state variables represented by Equations (1.3.29) and (1.3.31).

Therefore the merged system is an autonomous system of differential equations since there

are no time-dependent inputs to the system of differential equations as there were in the

unmerged, pituitary and ovarian models. In addition, the merged system is nonlinear

because many of the equations involve nonlinear functions of the state variables as op-

posed to the unmerged models where the nonlinearities appeared in the time-dependent
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coefficients of the linear differential equations. Finally, the merged system involves de-

lay differential equations as the ovarian state variables are delayed in the LH and FSH

synthesis terms (see Equations (1.3.28) and (1.3.30)).

1.4 Parameter Estimation and Model Simulations

In order to study the dynamical behavior of the merged model, estimates of the 44 model

parameters are obtained either from the literature or through a parameter estimation

scheme. The only known model parameters are the clearance rates for LH and FSH

and the blood volume v, and the remaining 41 model parameters were estimated using

daily mean serum levels of LH, FSH, estradiol, progesterone, and inhibin of 33 normally

cycling women as measured by McLachlan et al. [32]. To estimate the 15 unknown

pituitary parameters in Equations (1.3.4)-(1.3.12), Harris-Clark et al. [20] applied the

Nelder-Mead Method in MATLAB to a least square cost function in order to fit the

pituitary model to the LH and FSH data in McLachlan et al. [32]. To estimate the ovarian

model parameters, Harris-Clark et al. [20] estimated the 15 ovarian system parameters in

Equations (1.3.16)-(1.3.24) and the 4 estradiol parameters in Equations (1.3.25) using the

Nelder-Mead Method and a least squares cost function that fit the ovarian system and

estradiol auxiliary equation to the E2 data in McLachlan et al. [32]. Then the remaining

7 parameters in the auxiliary equation for progesterone and inhibin, Equations (1.3.26)-

(1.3.27), were estimated using separate least squares cost functions for P4 and Inh. For a

complete description of the parameter estimation process, refer to Harris-Clark et al. [20]

and Harris [19].

Once the pituitary and ovarian models are merged together, the 44 parameters ob-

tained in the preceding two steps are then used as estimates of the merged model param-

eters. Numerical simulations of the merged model were run in MATLAB using the delay

differential equation solver dde23 to analyze the model output. These simulations are

discussed in detail in [20, 50] and will be described briefly here. Using appropriate initial

conditions, we observe the existence of two locally asymptotically stable periodic solutions

for the same set of parameter values. One is a large amplitude solution with a period of

29.5 days that approximates the McLachlan data for normally cycling women. See Figure

1.4.1 for graphs of the model simulations of E2 and LH as compared to the data. We refer

to this solution as the normal cycle. The second is a smaller amplitude solution that has

a period of 24 days and represents an abnormal menstrual cycle. Because there is no LH

surge, the abnormal cycle is anovulatory and its acyclic E2 profile suggests the possibility

of PCOS [61] (see the dashed LH and E2 curves in Figures 1.4.2 and 1.4.3 which compare
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Figure 1.4.1: Simulations (solid curves) of the merged model, Equations (1.3.28)-(1.3.40),
giving the normal cycle compared to clinical data (open circles) in McLachlan et al. [32].

the hormone profiles of the normal and abnormal cycles over 120 days).
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Figure 1.4.2: Profiles of pituitary hormones for the normal (solid curves) and abnormal
(dashed curves) cycles. Notice that the abnormal cycle has no LH surge and therefore is
anovulatory.
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Figure 1.4.3: Profiles of ovarian hormones for the normal (solid curves) and abnormal
(dashed curves) cycles.

1.5 Sensitivity Analysis and Bifurcation Analysis: Per-

turbing the Model Parameters

Since the Nelder Mead Method was used to search for a parameter set that minimized

the least square cost functions locally, it is quite possible that other parameter sets exist

that fit the data well. As such it is important to determine how sensitive the model is

to changes in the model parameters. A local sensitivity analysis of the model parameters

was performed by Selgrade et al. [50] to determine the effects of small variations in the

model parameters on model outputs. In this analysis, normalized sensitivity coefficients

were measured by discrete changes in a model output relative to the output value divided

by changes in a model parameter relative to the parameter value. For example, if the

original value of the parameter p is increased by 1% and a model output is denoted by a

function of p, MO(p), then the normalized sensitivity coefficient is computed according

to the formula:

S(p) =
4MO

MO

p

4p
=
MO(1.01p)−MO(p)

MO(p)

p

0.01p
= 100

MO(1.01p)−MO(p)

MO(p)
. (1.5.1)
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This coefficient approximates the partial derivative of some model output, a function of

the model state variables, with respect to a model parameter that is normalized so that

comparisons may be made across model outputs and across model parameters.

Selgrade et al. [50] decided to use the height of the E2 mid-cycle peak along the normal

cycle as the model output in this analysis because a significant follicular phase rise in E2

stimulates the secretion of LH and causes the LH surge, which is necessary for ovulation

and normal ovarian function. After computing normalized sensitivity coefficients for the

44 model parameters, Selgrade et al. [50] found that with respect to the E2 mid-cycle peak

there were six parameters most sensitive to small variations: α,KmLH , c2, VFSH , c1, and

V0,LH . To further study the impact of perturbing sensitive model parameters, a bifurcation

analysis was performed to determine the effects that variations of the parameter values

have on the existence of the two locally asymptotically stable periodic solutions observed

in Figures 1.4.2 and 1.4.3. Selgrade et al. [50] chose the parameter KmLH for this analysis

because of its physiological significance.

The bifurcation diagram for the merged model is shown in Figure 1.5.1, where the

vertical axis denotes the difference between the maximum and the minimum of the first

state variable, RPLH , along a periodic solution or at an equilibrium (a solution where all

state variable are constant in time). Hence, this difference is a measure of the amplitude of

the periodic solution or is zero at an equilibrium. For a detailed description of the tedious

method that was used to track the positions of stable and unstable periodic solutions as

the parameter KmLH is varied refer to Selgrade et al. [50] The bifurcation diagram has

a closed loop of stable and unstable cycles (periodic solutions) where the upper half of

the loop (solid curve) represents stable large amplitude cycles and the lower half (dashed

curve) represents unstable cycles. Saddle-node bifurcations occur at KmLH ≈ 270 and

KmLH ≈ 770 where the stable and unstable cycles coalesce. The horizontal axis in Figure

1.5.1 represents a curve of equilibria. Along this axis a supercritical Hopf bifurcation

occurs at KmLH ≈ 265 resulting in a stable small amplitude periodic solution and an

unstable equilibrium solution. The branch of stable small amplitude cycles continues

through KmLH ≈ 1500 and then disappears (not shown on graph). The value KmLH =

360 is the parameter value that fits the McLachlan data best. AtKmLH = 360, the normal

cycle is indicated by a ∗ in Figure 1.5.1 but there also exists a stable, small amplitude

abnormal cycle. Hence, at KmLH = 360, a woman has the possibility of having a normal

menstrual cycle or an abnormal menstrual cycle depending on her initial hormone levels.

In fact, there are two stable periodic solutions that exist for every KmLH value between

270 and 770 (as seen in Figure 1.5.1). Therefore the initial hormone levels of a woman

with a KmLH in this range will determine whether she will cycle normally or abnormally.

When KmLH has a value outside this range, the amount of RPLH is too low to produce
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an LH surge and, therefore, the woman will have only an anovulatory cycle.

0 100 200 300 400 500 600 700 800 900

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Km
LH

R
P

L
H
 A

m
p

li
tu

d
e

stable cycle

unstable cycle

stable cycle

HB

SN

SN

Figure 1.5.1: Bifurcation diagram plots cycle amplitude against the parameter KmLH .
The horizontal axis represents equilibria. A solid curve indicates stable cycles or equilibria
and a dashed curve, unstable cycles or equilibria. HB and SN denote Hopf and saddle-node
bifurcations. ∗ indicates the normal cycle where KmLH = 360.

1.6 Exogenous Exposure of Ovarian Hormones

In Section 1.4, we observe that the merged model produces two asymptotically stable

period solutions for the same set of model parameters, a large amplitude cycle (normal

cycle) fitting the McLachlan data for normally cycling women and a small amplitude cycle

(abnormal cycle) that resembles the hormone profiles of women with menstrual cycle irreg-

ularities, possibly polycystic ovarian syndrome (PCOS). Since a specific set of parameters

represents the behavior of an individual woman, Figures 1.4.2, 1.4.3, and 1.5.1 indicate

that a woman’s initial hormone levels will determine whether she will cycle normally or

abnormally. By perturbing one parameter and keeping all of the other parameters fixed,

we also observe that women with similar hormone profiles can also have a normal or an

abnormal cycle (see Figure 1.5.1). These results lead us to the following questions: Can
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the abnormal cycle be perturbed into the normal cycle by applying some exogenous expo-

sure of ovarian hormones (while keeping the parameter values fixed)? Similarly, can the

normal cycle be perturbed into the abnormal cycle?

1.6.1 PCOS and Progesterone Treatment

Polycystic ovarian syndrome (PCOS), a menstrual cycle abnormality that is a leading

cause of infertility in women [1, 2, 61], is usually associated with abnormal hormone

profiles. Many PCOS women exhibit high androgen levels and low progesterone levels [61].

For example, low progesterone during the luteal phase permits more LH secretion at the

expense of FSH secretion because of too rapid pulsing of gonadotropin releasing hormone

which affects the pituitary’s synthesis and release of the gonadotropins, see Marshall et

al. [28]. Assuming that the abnormal cycle (dashed curves in Figure 1.4.3) of our model

represents PCOS, a progesterone treatment may be tested in the setting of this model by

trying to perturb the abnormal solution to the normal cycle (solid curves in Figure 1.4.3)

with exogenous P4. In fact, the administration of exogenous P4 was implemented by

Harris-Clark et al. [20] by adding a constant term to the progesterone auxiliary equation

(1.3.26). The progesterone therapy shown in Figure 1.6.1 adds 80 nmol/L of P4 to (1.3.26)

for 5 days at the beginning of the luteal phase of the abnormal cycle (from day 8 to day

13 of the cycle) and results in normal serum levels of all 5 hormones by the next cycle.
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Figure 1.6.1: The upper graph is P4 for the abnormal cycle. The middle graph is a P4

treatment of 80 nmol/L for the first 5 days of the luteal phase of the first cycle. The lower
curve graphs P4 with this treatment to show that normal P4 levels are restored after one
cycle.
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1.6.2 Endocrine Disruption

The model described in this chapter can also be used to simulate the effects of exogenous

substances on normal menstrual cycle behavior. There are concerns that environmental

chemicals with estrogenic activity can disrupt the reproductive endocrine system and may

contribute to the increased incidence of breast cancer [11], declines in sperm counts [52],

and developmental abnormalities [30]. To test whether the normal cycle of our model can

be perturbed (disrupted) into the abnormal cycle due to exposure to exogenous estrogen,

a constant term can be added to the estradiol auxiliary equation (1.3.25). Figure 1.6.2

shows that the administration of 50 ng/L of E2 for one complete cycle (∼30 days) starting

at day 6 of the follicular phase of the normal cycle results in E2 hormone levels that are

too low to produce an LH surge, and hence, disrupts the normal menstrual cycle. A

more complicated estrogen disruption was carried out by Harris-Clark et al. [20] which

perturbed the normal cycle to the abnormal cycle.
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Figure 1.6.2: The upper graph shows the normal E2 profile. The middle graph depicts a
30 days exposure to 50 ng/L of exogeneous E2 starting on day 6 of the normal cycle. The
lower graph shows that this exposure perturbs the normal cycle into the abnormal cycle.
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1.7 Summary and Discussion

The mathematical model presented here describes the biological mechanisms pertinent to

hormonal control of the menstrual cycle of adult women. Average daily blood levels of five

essential hormones are tracked. Because the biological system is dual control, the model

may be decomposed into two submodels — one submodel for the pituitary hormones

LH and FSH under the control of only ovarian hormones and the other submodel for

the ovarian hormones E2, P4 and Inh under the control of only pituitary hormones. Each

submodel is linear in its state variables with time-dependent input functions for the control

variables estimated from data in the literature (e.g., McLachlan et al. [32]). Parameter

identification is performed on each submodel separately. These parameter estimates are

good starting values for parameter identification for the merged model. The final merged

model is a system of 13 nonlinear ordinary differential equations with three discrete time-

delays representing time lags in the pituitary’s synthesis response to changes in ovarian

hormone levels. Simulations of the merged model provide an excellent approximation to

the hormone data in McLachlan et al. [32] for normally cycling women, see Figure 1.4.1.

Surprisingly, this model with the parameters which fit the McLachlan data best also

has another stable periodic solution, which we refer to as the abnormal cycle. Because

of a lack of an LH surge, the abnormal cycle is anovulatory and hormone profiles are

reminiscent of PCOS. In fact, the acyclic E2 level of about 200 ng/L may be contraceptive,

see Figure 1.4.3. We illustrate how exogenous ovarian hormones can be used to perturb one

stable cycle to the other. Although the model with this parameter set is bistable, multiple

simulations indicate that the state space region of initial conditions giving solutions which

approach the normal cycle is much larger than the region of initial conditions approaching

the abnormal cycle.

Biological data are inherently variable. Data collected by Welt et al. [57] for the same

five hormones in McLachlan et al. [32] has been used by Pasteur [37] to estimate param-

eters for the model described above. The McLachlan and Welt data sets are somewhat

different so the resulting parameter sets are different. Pasteur’s simulations of the model

using the Welt data exhibit only one stable periodic solution and it fits the Welt data

for normally cycling women. Selgrade et al. [50] explained this apparent inconsistency

by showing that changing the value of KmLH in the Welt system resulted in the Welt

model exhibiting two stable cycles like the McLachlan model. As discussed in Section 1.5,

model output is sensitive to changes in the parameter KmLH . Small changes in a sensitive

parameter may result in changes in the possible asymptotic behavior of model solutions

because of the occurrence of bifurcations. Hence, sensitivity analysis and bifurcation

analysis are essential to understanding and using a mathematical model.
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What does this model say about the menstrual cycle of individual women? Depending

on an individual’s parameters, she may cycle normally after a length of time regardless

of her initial hormone levels. Her model corresponds to the Welt parameter set. On the

other hand, another woman may have two possible menstrual cycles depending on initial

hormone levels and one of these cycles is anovulatory. Her model is like the McLach-

lan model. If her cycle is anovulatory then we demonstrate how the administration of

exogenous hormones may perturb it to the ovulatory cycle.

Finally, this model may be refined by including additional important reproductive

hormones. Welt et al. [57] collected data for two types of inhibin, Inh A and Inh B. Both

inhibit FSH synthesis but Inh B is a good indicator of ovarian aging and would be useful for

extending the model to older reproductive women in the age range 35-45 years. Another

improvement would be to separate the functions of the pituitary and hypothalamus in

order to describe the role of gonadotropin releasing hormone (GnRH), because many cycle

abnormalities involve irregular GnRH pulsing. However, the time scale for GnRH pulsing

is that of minutes and hours. The present model is on a time scale of days and months.

Handling multiple time scales will complicate the model significantly.
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